The Lu Qi-Keng conjecture fails for strongly convex algebraic complete Reinhardt domains in $\mathbb {C}^n\ (n \ge 3)$
HTML articles powered by AMS MathViewer
- by Nguyên Viêt Anh
- Proc. Amer. Math. Soc. 128 (2000), 1729-1732
- DOI: https://doi.org/10.1090/S0002-9939-99-05228-4
- Published electronically: October 29, 1999
- PDF | Request permission
Abstract:
In this note, we give an example of a strongly convex algebraic complete Reinhardt domain which is not Lu Qi-Keng in ${\mathbb {C}}^{n}$ for any $n \geq 3.$References
- Harold P. Boas, Counterexample to the Lu Qi-Keng conjecture, Proc. Amer. Math. Soc. 97 (1986), no. 2, 374–375. MR 835902, DOI 10.1090/S0002-9939-1986-0835902-8
- Harold P. Boas, The Lu Qi-Keng conjecture fails generically, Proc. Amer. Math. Soc. 124 (1996), no. 7, 2021–2027. MR 1317032, DOI 10.1090/S0002-9939-96-03259-5
- Harold P. Boas & Siqi Fu & Emil J. Straube, The Bergman kernel function : Explicit formulas and zeroes, Preprint, 1997.
- G. Hardy & J. E. Littlewood & G. Polya, Inequalities, Second Edition, Cambridge Mathematical Library (1994).
- K. T. Hahn and Peter Pflug, On a minimal complex norm that extends the real Euclidean norm, Monatsh. Math. 105 (1988), no. 2, 107–112. MR 930429, DOI 10.1007/BF01501163
- Qi-Keng Lu, On Kähler manifolds with constant curvature, Chinese Math. 8 (1966), 283-298.
- P. Pflug & E. H. Youssfi, The Lu Qi-Keng conjecture fails for strongly convex algebraic domains, Arch. Math. 71 (1998), 240–245.
- I. Ramadanov, Sur une propriété de la fonction de Bergman, C. R. Acad. Bulgare Sci. 20 (1967), 759–762 (French). MR 226042
- Nobuyuki Suita and Akira Yamada, On the Lu Qi-keng conjecture, Proc. Amer. Math. Soc. 59 (1976), no. 2, 222–224. MR 425185, DOI 10.1090/S0002-9939-1976-0425185-9
Bibliographic Information
- Nguyên Viêt Anh
- Affiliation: Université de Provence, LATP U.M.R C.N.R.S 6632, C.M.I, 39, rue Joliot-Curie, 13453 Marseille Cedex 13, France
- Email: vietanh@gyptis.univ-mrs.fr.
- Received by editor(s): July 14, 1998
- Published electronically: October 29, 1999
- Communicated by: Steven R. Bell
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 1729-1732
- MSC (1991): Primary 32H10
- DOI: https://doi.org/10.1090/S0002-9939-99-05228-4
- MathSciNet review: 1653405