On conditions for polyconvexity
HTML articles powered by AMS MathViewer
- by Jan Kristensen
- Proc. Amer. Math. Soc. 128 (2000), 1793-1797
- DOI: https://doi.org/10.1090/S0002-9939-99-05387-3
- Published electronically: October 29, 1999
- PDF | Request permission
Abstract:
We give an example of a smooth function $f: \mathbb R^{2\times 2} \to \mathbb R$, which is not polyconvex and which has the property that its restriction to any ball $B \subset \mathbb R^{2\times 2}$ of radius one can be extended to a smooth polyconvex function $f_{B}: \mathbb R^{2\times 2} \to \mathbb R$. In particular, it implies that there exists no ‘local condition’ which is necessary and sufficient for polyconvexity of functions $g: {\mathbb R}^{n \times m} \to \mathbb R$, where $n$, $m \geq 2$. We also briefly discuss connections with quasiconvexity.References
- Jean-Jacques Alibert and Bernard Dacorogna, An example of a quasiconvex function that is not polyconvex in two dimensions, Arch. Rational Mech. Anal. 117 (1992), no. 2, 155–166. MR 1145109, DOI 10.1007/BF00387763
- G. Aubert, On a counterexample of a rank $1$ convex function which is not polyconvex in the case $N=2$, Proc. Roy. Soc. Edinburgh Sect. A 106 (1987), no. 3-4, 237–240. MR 906209, DOI 10.1017/S0308210500018382
- John M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1976/77), no. 4, 337–403. MR 475169, DOI 10.1007/BF00279992
- Bernard Dacorogna, Direct methods in the calculus of variations, Applied Mathematical Sciences, vol. 78, Springer-Verlag, Berlin, 1989. MR 990890, DOI 10.1007/978-3-642-51440-1
- J. Kristensen. On the non-locality of quasiconvexity. I.H.P. Analyse Non Linéaire, to appear.
- J. Kristensen. On quasiconvex envelopes of locally bounded functions. Preprint 1996.
- Tadeusz Iwaniec and Adam Lutoborski, Polyconvex functionals for nearly conformal deformations, SIAM J. Math. Anal. 27 (1996), no. 3, 609–619. MR 1382824, DOI 10.1137/0527033
- Paolo Marcellini, Quasiconvex quadratic forms in two dimensions, Appl. Math. Optim. 11 (1984), no. 2, 183–189. MR 743926, DOI 10.1007/BF01442177
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- S. Müller. Variational models for microstructure and phase transitions. Lectures at the C.I.M.E. summer school ‘Calculus of variations and geometric evolution problems’, Cetraro 1996.
- D. Serre, Formes quadratiques et calcul des variations, J. Math. Pures Appl. (9) 62 (1983), no. 2, 177–196 (French, with English summary). MR 713395
- Vladimír Šverák, Quasiconvex functions with subquadratic growth, Proc. Roy. Soc. London Ser. A 433 (1991), no. 1889, 723–725. MR 1116970, DOI 10.1098/rspa.1991.0073
- Vladimír Šverák, Rank-one convexity does not imply quasiconvexity, Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), no. 1-2, 185–189. MR 1149994, DOI 10.1017/S0308210500015080
- Luc Tartar, The compensated compactness method applied to systems of conservation laws, Systems of nonlinear partial differential equations (Oxford, 1982) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 111, Reidel, Dordrecht, 1983, pp. 263–285. MR 725524
- F.J. Terpstra. Die darstellung der biquadratischen formen als summen von quadraten mit anwendung auf die variationsrechnung. Math. Ann. 116: 166-80, 1938.
Bibliographic Information
- Jan Kristensen
- Affiliation: Mathematical Institute, University of Oxford, 24-29 St Giles, Oxford OX1 3LB, United Kingdom
- Email: kristens@maths.ox.ac.uk
- Received by editor(s): July 29, 1998
- Published electronically: October 29, 1999
- Additional Notes: Supported by the Danish Natural Science Research Council through grant no. 9501304.
- Communicated by: Steven R. Bell
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 1793-1797
- MSC (1991): Primary 49J10, 49J45
- DOI: https://doi.org/10.1090/S0002-9939-99-05387-3
- MathSciNet review: 1670399