On integers of the form $2^k\pm p^{\alpha _1}_1p^{\alpha _2}_2\dotsb p^{\alpha _r}_r$
HTML articles powered by AMS MathViewer
- by Yong-Gao Chen
- Proc. Amer. Math. Soc. 128 (2000), 1613-1616
- DOI: https://doi.org/10.1090/S0002-9939-99-05482-9
- Published electronically: November 23, 1999
- PDF | Request permission
Abstract:
In this paper we prove that the set of positive odd integers which have no representation of the form $2^{n} \pm p^{\alpha } q^{\beta }$, where $p$, $q$ are distinct odd primes and $n, \alpha ,\beta$ are nonnegative integers, has positive lower asymptotic density in the set of all positive odd integers.References
- A. Baker, The theory of linear forms in logarithms, Transcendence theory: advances and applications (Proc. Conf., Univ. Cambridge, Cambridge, 1976) Academic Press, London, 1977, pp. 1–27. MR 0498417
- A. S. Bang, Taltheoretiske Undersgelser, Tidsskrift for Mat. (5), 4(1886), 70-80, 130-137.
- G. D. Birkhoff and H. S. Vandiver, On the integral divisors of $a^{n}-b^{n}$, Ann. Math. 5(1904), 173-180.
- S. L. G. Choi, Covering the set of integers by congruence classes of distinct moduli, Math. Comp. 25 (1971), 885–895. MR 297692, DOI 10.1090/S0025-5718-1971-0297692-7
- Fred Cohen and J. L. Selfridge, Not every number is the sum or difference of two prime powers, Math. Comp. 29 (1975), 79–81. MR 376583, DOI 10.1090/S0025-5718-1975-0376583-0
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- Richard K. Guy, Unsolved problems in number theory, 2nd ed., Problem Books in Mathematics, Springer-Verlag, New York, 1994. Unsolved Problems in Intuitive Mathematics, I. MR 1299330, DOI 10.1007/978-1-4899-3585-4
- N. P. Romanoff, Über einige Sätze der additiven Zahlentheorie, Math. Ann. 57(1934), 668-678.
- K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. 3(1892), 265-284.
Bibliographic Information
- Yong-Gao Chen
- Affiliation: Department of Mathematics, Nanjing Normal University, Nanjing 210097, People’s Republic of China
- MR Author ID: 304097
- Email: ygchen@pine.njnu.edu.cn
- Received by editor(s): July 20, 1998
- Published electronically: November 23, 1999
- Additional Notes: This research was supported by the Fok Ying Tung Education Foundation and the National Natural Science Foundation of China, Grant No 19701015
- Communicated by: David E. Rohrlich
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 1613-1616
- MSC (2000): Primary 11A07, 11B25
- DOI: https://doi.org/10.1090/S0002-9939-99-05482-9
- MathSciNet review: 1695159