Existence of solutions for first order singular problems
HTML articles powered by AMS MathViewer
- by M. Cherpion and C. De Coster
- Proc. Amer. Math. Soc. 128 (2000), 1779-1791
- DOI: https://doi.org/10.1090/S0002-9939-99-05515-X
- Published electronically: December 8, 1999
- PDF | Request permission
Abstract:
We develop the lower and upper solutions method for first order initial value problems as well as for first order periodic problems in case the nonlinearity presents singularities. More precisely we prove that if we have a lower solution $\alpha$ and an upper solution $\beta$ of these problems, which are not necessarily continuous nor ordered, we have a solution wedged between $\min \{\alpha ,\beta \}$ and $\max \{\alpha ,\beta \}$.References
- Assohoun Adje, Existence et multiplicité des solutions d’équations différentielles ordinaires du premier ordre à non-linéarité discontinue, Ann. Soc. Sci. Bruxelles Sér. I 101 (1987), no. 3, 69–87 (1988) (French, with English summary). MR 973236
- Alberto Cabada, The monotone method for first-order problems with linear and nonlinear boundary conditions, Appl. Math. Comput. 63 (1994), no. 2-3, 163–186. MR 1280536, DOI 10.1016/0096-3003(94)90193-7
- Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783–787. MR 10, DOI 10.2307/2371336
- C. De Coster, La méthode des sur et sous solutions dans l’étude de problèmes aux limites, Thèse de doctorat, Louvain-la-Neuve, 1994.
- C. De Coster, M. R. Grossinho, and P. Habets, On pairs of positive solutions for a singular boundary value, Appl. Anal. 59 (1995), no. 1-4, 241–256. MR 1378039, DOI 10.1080/00036819508840403
- Marlène Frigon and Donal O’Regan, Existence results for some initial and boundary value problems without growth restriction, Proc. Amer. Math. Soc. 123 (1995), no. 1, 207–216. MR 1233971, DOI 10.1090/S0002-9939-1995-1233971-2
- Patrick Habets and Luis Sanchez, Periodic solutions of some Liénard equations with singularities, Proc. Amer. Math. Soc. 109 (1990), no. 4, 1035–1044. MR 1009991, DOI 10.1090/S0002-9939-1990-1009991-5
- Patrick Habets and Fabio Zanolin, Upper and lower solutions for a generalized Emden-Fowler equation, J. Math. Anal. Appl. 181 (1994), no. 3, 684–700. MR 1264540, DOI 10.1006/jmaa.1994.1052
- P. Habets and F. Zanolin, Positive solutions for a class of singular boundary value problems, Boll. Un. Mat. Ital. A (7) 9 (1995), no. 2, 273–286 (English, with Italian summary). MR 1336236
- J.K. Hale, Ordinary differential equations, Wiley-Intersciences, New-York (1969).
- I. T. Kiguradze and B. L. Shekhter, Singular boundary value problems for second-order ordinary differential equations, Current problems in mathematics. Newest results, Vol. 30 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987, pp. 105–201, 204 (Russian). Translated in J. Soviet Math. 43 (1988), no. 2, 2340–2417. MR 925830
- H.-W. Knobloch, An existence theorem for periodic solutions of nonlinear ordinary differential equations, Michigan Math. J. 9 (1962), 303–309. MR 145159
- T. C. Lee and D. Willett, Second order singular boundary value problems, SIAM J. Math. Anal. 8 (1977), no. 4, 741–755. MR 440108, DOI 10.1137/0508057
- A. G. Lomtatidze, Positive solutions of boundary value problems for second-order ordinary differential equations with singularities, Differentsial′nye Uravneniya 23 (1987), no. 10, 1685–1692, 1834–1835 (Russian). MR 928850
- C. Marcelli and P. Rubbioni, A new extension of classical Müller’s theorem, Nonlinear Anal. 28 (1997), no. 11, 1759–1767. MR 1432630, DOI 10.1016/S0362-546X(95)00236-O
- J. Mawhin, Nonlinear functional analysis and periodic solutions of ordinary differential equations, Summer School “Difford 74", Stara Lesna, Czechoslovaquia (1974), 37-60.
- J. Mawhin, Nonlinear perturbations of Fredholm mappings in normed spaces and applications to differential equations, Univ. de Brasilia, Trabalho de Matem. 61 (1974).
- Sergio Moretto, Sull’esistenza di soluzioni periodiche per l’equazione $y^{\prime } =f(x,\,y)$, Ann. Univ. Ferrara Sez. VII (N.S.) 8 (1958/59), 61–67 (Italian, with French summary). MR 116119
- M. N. Nkashama, A generalized upper and lower solutions method and multiplicity results for nonlinear first-order ordinary differential equations, J. Math. Anal. Appl. 140 (1989), no. 2, 381–395. MR 1001864, DOI 10.1016/0022-247X(89)90072-3
- G. Peano, Sull’integrabilità delle equazioni differenziali di primo ordine, Atti Acad. Torino 21 (1885), 677-685.
- O. Perron, Ein neuer existenzbeweis für die integrale der differentialgleichung $y’=f(x,y)$, Math. Ann. 76 (1915), 471-484.
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- G. Scorza Dragoni, Sugli integrali dei sistemi di equazioni differenziali, Rend. Ist. Lombardo de Sc. e Let. 64 (1931), 659-682.
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
Bibliographic Information
- M. Cherpion
- Affiliation: Université Catholique de Louvain, Institut de Mathématique Pure et Appliquée, Chemin du Cyclotron 2, 1348 Louvain-La-Neuve, Belgique
- Email: cherpion@amm.ucl.ac.be
- C. De Coster
- Affiliation: Université du Littoral - Côte d’Opale, Centre Universitaire de la Mi-Voix, 50 Rue F. Buisson, B.P. 699, 62228 Calais Cédex, France
- Email: decoster@lma.univ-littoral.fr
- Received by editor(s): July 24, 1998
- Published electronically: December 8, 1999
- Communicated by: Hal L. Smith
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 1779-1791
- MSC (1991): Primary 34A12, 34B15
- DOI: https://doi.org/10.1090/S0002-9939-99-05515-X
- MathSciNet review: 1694454