Minimal curves of constant torsion
HTML articles powered by AMS MathViewer
- by Thomas A. Ivey
- Proc. Amer. Math. Soc. 128 (2000), 2095-2103
- DOI: https://doi.org/10.1090/S0002-9939-00-05526-X
- Published electronically: March 2, 2000
- PDF | Request permission
Abstract:
The Griffiths formalism is applied to find constant torsion curves which are extremal for arclength with respect to variations preserving torsion, fixing the endpoints and the binormals at the endpoints. The critical curves are elastic rods of constant torsion, which are shown to not realize certain boundary conditions.References
- Richard L. Bishop, There is more than one way to frame a curve, Amer. Math. Monthly 82 (1975), 246–251. MR 370377, DOI 10.2307/2319846
- Kenneth A. Brakke, The surface evolver, Experiment. Math. 1 (1992), no. 2, 141–165. MR 1203871
- Robert Bryant and Phillip Griffiths, Reduction for constrained variational problems and $\int {1\over 2}k^2\,ds$, Amer. J. Math. 108 (1986), no. 3, 525–570. MR 844630, DOI 10.2307/2374654
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- A. Calini, T. Ivey, Bäcklund transformations and knots of constant torsion, to appear in J. Knot Theory and its Ramifications 7 (1998), 719–746.
- C. Carathéodory, Untersuchungen über das Denaunaysche Problem der Variationsrechnung, Abh. Math. Sem. Hamburg 8 (1930), 32-55.
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
- G. Darboux, Leçons sur la Théorie Générale des Surfaces, Gauthier-Villars, 1917.
- Phillip A. Griffiths, Exterior differential systems and the calculus of variations, Progress in Mathematics, vol. 25, Birkhäuser, Boston, Mass., 1983. MR 684663
- Lucas Hsu, Calculus of variations via the Griffiths formalism, J. Differential Geom. 36 (1992), no. 3, 551–589. MR 1189496
- Joel Langer and David A. Singer, Lagrangian aspects of the Kirchhoff elastic rod, SIAM Rev. 38 (1996), no. 4, 605–618. MR 1420839, DOI 10.1137/S0036144593253290
- L. S. Pontrjagin, V. G. Boltjanskiĭ, R. V. Gamkrelidze, and E. F. Miščenko, Matematicheskaya teoriya optimal′nykh protsessov, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1961 (Russian). MR 0166036
- Robert S. Strichartz, Sub-Riemannian geometry, J. Differential Geom. 24 (1986), no. 2, 221–263. MR 862049
Bibliographic Information
- Thomas A. Ivey
- Affiliation: Department of Mathematical Sciences, Ball State University, Muncie, Indiana 47306
- MR Author ID: 333843
- Email: tivey@math.bsu.edu
- Received by editor(s): September 2, 1998
- Published electronically: March 2, 2000
- Communicated by: Christopher Croke
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 2095-2103
- MSC (2000): Primary 49K15, 53A04; Secondary 58A17, 58A30, 73C02
- DOI: https://doi.org/10.1090/S0002-9939-00-05526-X
- MathSciNet review: 1694865