From Hermite rings to Sylvester domains
HTML articles powered by AMS MathViewer
- by P. M. Cohn
- Proc. Amer. Math. Soc. 128 (2000), 1899-1904
- DOI: https://doi.org/10.1090/S0002-9939-99-05189-8
- Published electronically: November 1, 1999
- PDF | Request permission
Abstract:
The main result proved here is a new criterion for a ring to be a Sylvester domain, and so to have a universal skew field of fractions inverting all full matrices: An Hermite ring is a Sylvester domain if and only if any product of full matrices (when defined) is full. This is also shown to hold if (and only if) the set of all full matrices is lower multiplicative. The definition of Hermite rings is weakened, but it is shown that in any case infinitely many sentences are needed.References
- P. M. Cohn, Some remarks on the invariant basis property, Topology 5 (1966), 215–228. MR 197511, DOI 10.1016/0040-9383(66)90006-1
- P. M. Cohn, Un critère d’immersibilité d’un anneau dans un corps gauche, Comptes Rendus Acad. Sci. (Paris) Sér. A 272 (1971), 1442–1444.
- P. M. Cohn, The class of rings embeddable in skew fields, Bull. London Math. Soc. 6 (1974), 147–148. MR 366970, DOI 10.1112/blms/6.2.147
- P. M. Cohn, Universal Algebra (revised and enlarged edition), D. Reidel, Dordrecht-Boston, 1981.
- P. M. Cohn, Free rings and their relations, 2nd ed., London Mathematical Society Monographs, vol. 19, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1985. MR 800091
- P. M. Cohn, Skew fields, Encyclopedia of Mathematics and its Applications, vol. 57, Cambridge University Press, Cambridge, 1995. Theory of general division rings. MR 1349108, DOI 10.1017/CBO9781139087193
- P. M. Cohn and A. H. Schofield, On the law of nullity, Math. Proc. Cambridge Philos. Soc. 91 (1982), no. 3, 357–374. MR 654083, DOI 10.1017/S0305004100059430
Bibliographic Information
- P. M. Cohn
- Affiliation: University College London, Gower Street, London WC1E 6BT, United Kingdom
- Email: pmc@math.ucl.ac.uk
- Received by editor(s): April 17, 1998
- Received by editor(s) in revised form: August 24, 1998
- Published electronically: November 1, 1999
- Communicated by: Ken Goodearl
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 1899-1904
- MSC (1991): Primary 16E60; Secondary 15A30, 16D40
- DOI: https://doi.org/10.1090/S0002-9939-99-05189-8
- MathSciNet review: 1646314