SPECTRAL STRUCTURE AND SUBDECOMPOSABILITY OF p-HYPERSONAL OPERATORS

RUAN YINGBIN AND YAN ZIKUN

Communicated by David R. Larson

ABSTRACT. We prove that for every p-hyponormal operator A, $0 < p \leq 1$, there corresponds a hyponormal operator \tilde{A} such that A and \tilde{A} have “equal spectral structure”. We also prove that every p-hyponormal operator A, $0 < p \leq 1$, is subdecomposable. Then some relevant quasisimilarity results are obtained, including that two quasisimilar p-hyponormal operators have equal essential spectra.

1. Introduction and notation

Let H be a complex separable Hilbert space and let $L(H)$ denote the algebra of all bounded linear operators on H. An operator $A \in L(H)$ is said to be p-hyponormal, $0 < p \leq 1$, denoted as $A \in p-H$, if $(AA^*)^p \leq (A^*A)^p$. An 1-hyponormal operator is hyponormal, and a $\frac{1}{2}$-hyponormal operator is said to be semi-hyponormal. In the sequel, for every $A \in L(H)$, we define \tilde{A} by $\tilde{A} = |A|^\frac{1}{p}U|A|^\frac{1}{p}$ where $U, |A|$ are as in the polar decomposition $A = U|A|$. Let \tilde{A} have the polar decomposition $\tilde{A} = V|\tilde{A}|$. The operator \tilde{A} is then defined by $\tilde{A} = |\tilde{A}|^\frac{1}{2}V|\tilde{A}|^\frac{1}{2}$. Aluthge \cite{1} showed that for $A \in p-H$, $0 < p \leq 1$, A is semi-hyponormal and \tilde{A} is hyponormal. Some authors paid attention to the relations between the spectral structure of A and \tilde{A} (e.g. \cite{2}, \cite{3}, \cite{4}). In this note, we prove that for general $A \in p-H$, $0 < p \leq 1$, A, \tilde{A} and \tilde{A} have “equal spectral structure”, i.e. $\sigma_s(A) = \sigma_s(\tilde{A}) = \sigma_s(\tilde{A})$, where $\sigma_s = \sigma, \sigma_\alpha, \sigma_\infty, \sigma_\sup, \sigma_w, \sigma_e, \sigma_k, \sigma_p, \psi, \psi_{mn}$ or σ_0^p.

A subdecomposable operator is, up to similarity, the restriction of a decomposable operator to its invariant space. J. Eschmeier \cite{5} proved that $A \in L(H)$ is subdecomposable if and only if $A \in (\beta)$, i.e. A has Bishop’s property (β). M.Putinar and J.Eschmeier \cite{6}, \cite{7} proved that hyponormal operators are subscalar and therefore subdecomposable. B.Duggal \cite{8} asked whether a general p-hyponormal operator satisfies condition (β). We give an affirmative answer to this question. Yang Liming \cite{9} proved that two quasisimilar hyponormal operators have equal essential spectra.

By means of the subdecomposability of $A \in p-H$, we generalize and strengthen this result to general p-hyponormal operators ($0 < p \leq 1$).

For $T \in L(H), \sigma(T), \sigma_p(T), \sigma_e(T)$ and $\sigma_c(T)$ denote the spectrum, point spectrum, approximate point spectrum and essential spectrum of T, respectively. Write

\begin{itemize}
\item Received by the editors August 27, 1998.
\item 1991 Mathematics Subject Classification. Primary 47B99, 47A10.
\item Key words and phrases. Spectra, subdecomposability, p-hyponormal, quasisimilarity.
\item This research was supported by the National Natural Science Foundation of China.
\end{itemize}
\[\nu(T) = \dim \ker T, \quad \mu(T) = \dim \ker T^*; \] the index of \(T \) is defined by \(\text{ind} T = \nu(T) - \mu(T) \) if at least one of \(\nu(T) \) and \(\mu(T) \) is finite. Let \(\psi \) denote the set of all semi-Fredholm operators on \(H \). Write \(\rho - F(T) = \{ \lambda \in \mathbb{C} : T - \lambda \in \psi \} \), \(\psi_n(T) = \{ \lambda \in \mathbb{C} : R(T - \lambda) \text{ is closed}, \text{ind} (T - \lambda) = n \} \) \((n = 0, \pm 1, \pm 2, \ldots, \pm \infty) \), \(\psi_{mn}(T) = \{ \lambda \in \mathbb{C} : R(T - \lambda) \text{ is closed}, \nu(T - \lambda) = m, \mu(T - \lambda) = n \} \) \((m, n = 0, 1, 2, \ldots, \infty) \). Also write \(\psi_+(T) = \bigcup_{1 \leq n \leq \infty} \psi_n(T), \quad \psi_-(T) = \bigcup_{1 \leq n \leq \infty} \psi_{-n}(T), \quad \sigma_+(T) = \{ \lambda \in \mathbb{C} : \ker(T - \lambda) = \{0\}, \check{R}(T - \lambda) \text{ is closed}, \check{R}(T - \lambda) \notin \mathbb{H} \}, \quad \sigma_-(T) = \{ \lambda \in \mathbb{C} : \ker(T - \lambda) \text{ is not closed} \} \). \(\sigma_k(T) = \mathbb{C} \setminus \rho_{\text{reg}}(T) \). \(\sigma_0^b(T) \) denotes the set of all isolated eigenvalues of \(T \) with finite algebraic multiplicity. \(\mathbb{K}(H) \) denotes the set of all compact operators on \(H \). \(\sigma_p(T) = \bigcap_{K \in \mathbb{K}(H)} \sigma(T + K) = \sigma(T) \setminus \sigma_0^b(T), \quad \sigma_{w}(T) = \bigcap_{K \in \mathbb{K}(H)} \sigma(T + K) = \sigma(T) \setminus \sigma_0^b(T) \).

Suppose \(\lambda \in \mathbb{C}, T \in L(H) \). \(\lambda \) is called a regular point of the operator \(T \) if \(\| P_{\ker(T - \mu)} - P_{\ker(T - \lambda)} \| \to 0 (\mu \to \lambda) \), where \(P_{\ker(T - \lambda)} \) denotes the orthogonal projection onto \(\ker(T - \lambda) \). \(\tau^+(T) \) denotes the set of all regular points of \(T \), \(\tau^+(T) = \mathbb{C} \setminus \tau^-(T) \). For every set-valued function \(B(\cdot) : L(H) \to 2^\mathbb{C} \), write \(B^+(T) = B(T) \cap \tau^+(T), B^0(T) = B(T) \setminus \tau^0(T) \) (see [2]).

Let \(T \in L(H) \). Suppose that the closed subspace \(M \) of \(H \) reduces \(T \); then \(M \) is said to be a normal subspace of \(T \) if \(T|_M \) is a normal operator. The operator \(T \) is said to be pure if \(T \) has no non-trivial normal subspace.

\(O(\Omega, H) \) denotes the Fréchet space of all \(H \)-valued analytic functions on the open set \(\Omega \subset \mathbb{C} \) with the topology defined by uniform convergence on every compact subset of \(\Omega \). Suppose \(T \in L(H) \); \(T \) is said to have Bishop’s property (\(\beta \)) (denoted by \(T \in (\beta) \)) if the mapping \(\alpha_{T, \Omega} : O(\Omega, H) \to O(\Omega, H), f \mapsto (T - z)f \) is injective and has closed range for every open subset \(\Omega \) of \(\mathbb{C} \). Write \(E_2(T) = \{ \lambda \in \mathbb{C} : \exists \delta > 0 \text{ such that for } \Omega = O(\lambda, \delta'), 0 < \delta' < \delta, \alpha_{T, \Omega} \text{ has closed range}\} \), \(A(T) = \{ \lambda \in \mathbb{C} : \exists \delta > 0 \text{ such that for } \Omega = O(\lambda, \delta'), 0 < \delta' < \delta, \alpha_{T, \Omega} \text{ is injective}\} \). Write \(T \in (E_2)(A) \) if for every \(\lambda \in \mathbb{C}, \lambda \in E_2(T)(A(T)) \). \(T \in (A) \) is equivalent to \(T \) has the single-valued extension property. It is clear by definitions (see [10] Proposition 4)) that \(T \in (\beta) \) if and only if \(T \in (A) \) and \(T \in (E_2) \).

Let \(T_1, T_2 \in L(H) \); we say \(T_1 \) is a dense (quasiaffine) transform of \(T_2 \), denoted as \(T_1 \overset{dr}{\sim} T_2 \) \((T_1 \overset{\xi}{\sim} T_2) \), if there exists operator \(X \) with dense range (injective and dense range) such that \(XT_1 = T_2X \). We said \(T_1 \) and \(T_2 \) are densely (quasi-) similar, denoted as \(T_1 \overset{dr}{\sim} T_2 \) \((T_1 \overset{\xi}{\sim} T_2) \), if \(T_1 \overset{dr}{\rightarrow} T_2 \overset{dr}{\rightarrow} T_1 \overset{\xi}{\rightarrow} T_2 \overset{\xi}{\rightarrow} T_1 \).

2. Spectral structure of \(A \) and \(\hat{A} \)

Lemma 1. If \(T \) is a pure \(p \)-hyponormal operator, then \(\sigma_p(T) = \emptyset \).

Proof. Let \(T \) have the polar decomposition \(T = U|T| \). If \(\lambda \in \sigma_p(T) \), then \(\ker(T - \lambda) \neq \{0\} \). By [11] Proof of Theorem 4, \(\ker(T - \lambda) \subset \ker(T - \lambda)^* \). This implies that \(\ker(T - \lambda) \) is a reducing subspace of \(T \) and \(T|_{\ker(T - \lambda)} \) is normal, a contradiction to the purity of \(T \). Hence \(\sigma_p(T) = \emptyset \).

Lemma 2. Let \(S, T \in L(H) \). If \(A = TS, B = ST, \) then
\[\dim \ker (A - \lambda) = \dim \ker (B - \lambda), \quad \lambda \neq 0; \]
moreover, if \(\ker S = \ker T \), then \(\sigma_p(A) = \sigma_p(B) \).

Proof. Suppose \(\lambda \neq 0 \), and \(x_i \in \ker (A - \lambda), i = 1, 2, \ldots, n \); \(x_1, x_2, \ldots, x_n \) are linearly independent. Then \(BSx_i = STSx_i = SAx_i = \lambda Sx_i, \quad Sx_i \in \overline{\mathbb{C}x_i} \).
Ker(B − λ), i = 1, 2, · · · , n. We claim that Sx1, Sx2, · · · , Sxn are linearly independent too. For otherwise, there would exist constants α1, α2, · · · , αn, not all zero, such that n \sum_{i=1}^{n} \alpha_i Sx_i = 0 and hence \sum_{i=1}^{n} \alpha_i Ax_i = \sum_{i=1}^{n} \alpha_i TSx_i = 0. Since \sum_{i=1}^{n} \alpha_i Ax_i = \lambda \sum_{i=1}^{n} \alpha_i x_i, and λ ≠ 0, therefore \sum_{i=1}^{n} \alpha_i x_i = 0, a contradiction with the supposition that x1, x2, · · · , xn are linearly independent. Therefore dimKer(A − λ) ≤ dimKer(B − λ). A similar argument shows that dimKer(B − λ) ≤ dimKer(A − λ). It follows that dimKer(A − λ) = dimKer(B − λ), λ ≠ 0.

This equality implies \sigma_p(A) \setminus \{0\} = \sigma_p(B) \setminus \{0\}.

If 0 ∈ \sigma_p(A), then there exists x ∈ H, x ≠ 0 and Ax = TSx = 0. This implies BSx = 0. If Sx ≠ 0, then 0 ∈ \sigma_p(B). If Sx = 0, then it follows from Ker S = Ker T that Tx = 0 and Bx = 0; this implies 0 ∈ \sigma_p(B), too. Similarly 0 ∈ \sigma_p(B) implies 0 ∈ \sigma_p(A). The conclusion \sigma_p(A) = \sigma_p(B) now follows.

Lemma 3. Suppose that A ∈ L(H); then dimKer(A − λ) = dimKer(A − λ)*, \lambda ≠ 0, and \sigma_p(A) = \sigma_p(A)*.

Lemma 4 ([12]). Let T ∈ L(H) be a semi-Fredholm operator. Then there exists \delta > 0 such that S ∈ L(H), \|T − S\| < \delta implies that S is semi-Fredholm and \nu(S) ≤ \nu(T), \mu(S) ≤ \mu(T), \text{ind} S = \text{ind} T.

Theorem 5. Let A ∈ L(H). If A0, the pure part of A, has no eigenvalue, then

(i) \sigma(A) = \sigma_p^0(A) \cup (\bigcup_{1 \leq n \leq \infty} \psi_{\infty}(A)) \cup \psi_{\infty}(A) \cup \sigma_{p}^{0}(A),

(ii) A and A* have “equal spectral structure”, i.e. \sigma_s(A) = \sigma_s(A*), where \sigma_s = \sigma, \sigma_r, \sigma_p, \sigma_w, \sigma_e, \sigma_k, \sigma_d, \psi_n (−\infty < n < \infty), \psi_{mn} (0 < m, n < \infty) or \sigma^0_p.

Proof. Decompose A into normal and pure parts: A = N + A0. If N = W|N| and A0 = V|A0| are the polar decompositions of N and A0 respectively, then it is easy to derive that W|N| = |N|W, N = |N|^*W|N|^* = N and that A = N + A0.

Since \sigma_p(A0) = \sigma_p(A0) = \emptyset , we have

(1) \sigma(A0) = (\bigcup_{1 \leq n \leq \infty} \psi_{\infty}(A0)) \cup \sigma_{p}^{0}(A0),

(2) \sigma(A0*) = (\bigcup_{1 \leq n \leq \infty} \psi_{\infty}(A0)) \cup \sigma_{p}^{0}(A0*).

By the property of normal operators, we have

(3) \sigma(N) = \sigma_p^0(N) \cup \psi_{\infty}(N) \cup \sigma_{p}^{0}(N).

(1) and (3) implies that (see [9])

\sigma(A) = \sigma_p^0(A) \cup (\bigcup_{1 \leq n \leq \infty} \psi_{\infty}(A)) \cup \psi_{\infty}(A) \cup \sigma_{p}^{0}(A),

i.e. (i) holds.

Now let us turn to the spectral parts of A0 and A0*. Let A0^0, (A0*) = A0^0 be the Berberian extension (see [13], Chapter I) of A0 and A0 respectively; then
\[\sigma_a(A_0) = \sigma_p(A_0^0) \text{ and } \sigma_a(\hat{A}_0) = \sigma_p(\hat{A}_0^0). \]

By Lemma 3, \(\sigma_p(A_0^0) = \sigma_p(\hat{A}_0^0) \); by (1), (2), \(\sigma_a(A_0) = \sigma_a(\hat{A}_0) \) and \(\sigma_a(\hat{A}_0) = \sigma_a(\hat{A}_0) \). It follows then that
\[\sigma_p(A_0) = \sigma_p(\hat{A}_0). \]

It follows from Lemma 3 and (4) that
\[\psi_{0n}(A_0) \setminus \{0\} = \psi_{0n}(\hat{A}_0) \setminus \{0\}, \ 0 \leq n \leq \infty. \]

Since \(\psi_{0n}(A_0) \) and \(\psi_{0n}(\hat{A}_0) \) are open sets by Lemma 4, and \(\sigma_p(\hat{A}_0) = \sigma_p(\hat{A}_0) \), it is easy to derive that
\[\psi_{0n}(A_0) = \psi_{0n}(\hat{A}_0), \ 0 \leq n \leq \infty. \]

(1)–(5) imply that
\[\sigma_p(A) = \sigma_p(\hat{A}), \]
\[\psi_{mn}(A) = \psi_{mn}(\hat{A}) = \emptyset, \ m > n, \]
\[\psi_{mn}(A) = \psi_{mn}(N) \cap \psi_{0,n-m}(A_0) = \psi_{mn}(N) \cap \psi_{0,n-m}(\hat{A}_0) = \psi_{mn}(\hat{A}), \]
\[0 \leq m \leq n, m < \infty. \]

\[\psi_{\infty\infty}(A) = \psi_{\infty\infty}(N) \setminus \sigma_p(A_0) = \psi_{\infty\infty}(N) \setminus \sigma_p(\hat{A}_0) = \psi_{\infty\infty}(\hat{A}), \]

or briefly,
\[\psi_{mn}(A) = \psi_{mn}(\hat{A}), \ 0 \leq m, n \leq \infty. \]

The equalities \(\sigma_s(A) = \sigma_s(\hat{A}) \) in (ii) come now immediately from (6), (7) and the definitions and fundamental properties of various \(\sigma_s \). \(\square \)

Theorem 6. If \(A \in p-H \), \(0 < p \leq 1 \), then \(A \) has “equal spectral structure” (see Theorem 5) with the semi-hyponormal operator \(\hat{A} \) and the hyponormal operator \(\hat{A} \).

Proof. Obvious from Lemma 1 and Theorem 5. \(\square \)

3. SUBDECOMPOSABILITY AND QUASISIMILARITY

Theorem 7. Let \(T \in L(H), \lambda \in C \). If \(\text{Ker}T \subset \text{Ker}T^* \), then
(1) \(\lambda \in A(T) \) if and only if \(\lambda \in A(\hat{T}) \),
(2) \(\lambda \in E_2(T) \) if and only if \(\lambda \in E_2(\hat{T}) \),
(3) \(T \in (\beta) \) if and only if \(\hat{T} \in (\beta) \).

Proof. Since \(\text{Ker}T \subset \text{Ker}T^* \), we can write \(T = \theta \oplus T_1 \), where \(\theta = T|_{\text{Ker}T}, T_1 = T|_{(\text{Ker}T)^-} \). Write \(\mathbf{H}_1 = (\text{Ker}T)^+ \) and let \(T_1 = U|T_1| \) be the polar decomposition. It is clear that \(\text{Ker}T_1 = \{0\} \) and \(\hat{T} = \theta \oplus \tilde{T}_1 \). Thus, to prove the required result it suffices to show that \(\lambda \in A(T_1) \) \((E_2(T_1)) \) if and only if \(\lambda \in A(\hat{T}_1) \) \((E_2(\hat{T}_1)) \).

(1) Suppose that \(\lambda \in A(T_1) \); then there exists \(\delta > 0 \) such that for \(\Omega = O(\lambda, \delta^*) \), \(0 < \delta^* \leq \delta \), \(\alpha_{T_1, \Omega} \) is injective. Let \(f \in O(\Omega, \mathbf{H}_1), (\hat{T}_1 - z)f(z) = 0(z \in \Omega) \). Then \((\hat{T}_1 - z)|U|T_1|f(z) = U|T_1|\hat{T}_1(z) - z)f(z) = 0 \). Since \(\alpha_{T_1, \Omega} \) is injective, \(U|T_1|\hat{T}_1(z) = 0 \) \((z \in \Omega) \). It follows from \(\text{Ker}U|T_1|\hat{T}_1 = \{0\} \) that \(f(z) = 0 \) \((z \in \Omega) \). Thus \(\lambda \in A(\hat{T}_1) \).

The argument for the converse statement is similar.
(2) Suppose that \(\lambda \in E_2(\hat{T}_1) \); then there exists \(\delta > 0 \) such that for \(\Omega = O(\lambda, \delta'), 0 < \delta' < \delta, \alpha_{T, \Omega} \) has closed range. Suppose that \(f_n \in O(\Omega, \mathbf{H}_1), n = 1, 2, \ldots, (T_1 - z)f_n \to g \in O(\Omega, \mathbf{H}_1) \); then \(|T_1|^z (U/T_1 - z)f_n \to |T_1|^z g \), i.e., \((T_1 - z)|T_1|^z f_n \to |T_1|^z g \). By the hypothesis \(\lambda \in E_2(\hat{T}_1) \), there exists \(f \in O(\Omega, \mathbf{H}_1) \) such that \(|T_1|^z g = (T_1 - z)f \). A simple calculation shows that

\[
f(z) = \frac{1}{z}(\hat{T}_1f(z) - |T_1|^z g(z)) = |T_1|^z \left(\frac{U}{z} |T_1|^z f(z) - g(z) \right) \quad (z \in \Omega \setminus \{0\}).
\]

If \(\lambda \neq 0 \), we may assume that \(0 \notin \Omega \). Let \(\phi(z) = \frac{U}{z} |T_1|^z f(z) - g(z) \) (\(z \in \Omega \)). It is obvious then that \(\phi \in O(\Omega, \mathbf{H}_1) \) and \(|T_1|^z g = (T_1 - z)f \), \(\phi = |T_1|^z (T_1 - z)\phi \). But since \(\text{Ker}|T_1|^z = \text{Ker}T_1 = \{0\} \), hence \(g = (T_1 - z)\phi \), and so \(\alpha_{T, \Omega} \) has closed range. Thus \(\lambda \in E_2(T_1) \).

If \(\lambda = 0 \), let \(h(z) = U|T_1|^z f(z) - g(z) \) (\(z \in \Omega \)); then \(h \in O(\Omega, \mathbf{H}_1) \). Since \(|T_1|^z g(0) = |T_1|^z U|T_1|^z f(0) \) and \(\text{Ker}|T_1|^z = \text{Ker}T_1 = \{0\} \), we have

\[
h(0) = U|T_1|^z f(0) - g(0) = 0.
\]

Define

\[
\phi(z) = \begin{cases}
 h(z)/z, & 0 \neq z \in \Omega, \\
 h'(0), & z = 0.
\end{cases}
\]

It can be verified by calculation that \(\phi \in O(\Omega, \mathbf{H}_1) \). It follows from the preceding section that \(g(z) = (T_1 - z)\phi(z) \) (\(z \in \Omega \setminus \{0\} \)) and this, by virtue of the analyticity of \(g(z), \phi(z) \), implies that \(g(z) = (T_1 - z)\phi(z) \) (\(z \in \Omega \)), and so \(\alpha_{T, \Omega} \) has closed range. Thus \(0 \in E_2(T_1) \).

The converse argument is similar.

(3) The statement is obvious from (1),(2) and \(T \in \langle \beta \rangle \) if and only if \(T \in \langle A \rangle \) and \(T \in (E_2) \).

\[\square \]

Theorem 8. Suppose that \(A \in p \cdot \mathbf{H}, 0 < p \leq 1 \); then \(A \in \langle \beta \rangle \), i.e., \(A \) is subdecomposable.

Proof. Suppose \(A \in p \cdot \mathbf{H} \); then \(\text{Ker}A \subset \text{Ker}A^* \) and \(\text{Ker}\hat{A} \subset \text{Ker}(\hat{A})^* \) by \[\text{Lemma} 1 \]. Being a hyponormal operator, \(\hat{A} \in \langle \beta \rangle \); consequently \(\hat{A} \in \langle \beta \rangle \) and hence \(A \in \langle \beta \rangle \) by Theorem 7,(3).

\[\square \]

Lemma 9 ([11], Corollary 3). Let \(S \in L(\mathbf{H}) \) be subdecomposable, \(T \in L(\mathbf{H}) \). If \(T \overset{dr}{\longrightarrow} S \), then \(\sigma(S) \subset \sigma(T) \); if \(T \overset{dr}{\sim} S \), then \(\sigma_e(S) \subset \sigma_e(T) \).

Theorem 10. Let \(A \in p \cdot \mathbf{H}, 0 < p \leq 1, B \in L(\mathbf{H}) \). If \(B \overset{dr}{\rightarrow} A \), then \(\sigma(A) \subset \sigma(B) \); if \(B \overset{\sim}{\sim} A \), then \(\sigma_e(A) \subset \sigma_e(B) \).

Proof. Obvious from Theorem 8 and Lemma 9.

\[\square \]

Corollary 11. If \(A \) or \(A^* \in p \cdot \mathbf{H}, 0 < p \leq 1, B \in L(\mathbf{H}), A \not\sim B \), then \(\sigma_e(A) \subset \sigma_e(B), \sigma(A) \subset \sigma(B) \).

Corollary 12. If \(A, B \in p \cdot \mathbf{H}, 0 < p \leq 1, A \not\sim B \), then \(\sigma_e(A) = \sigma_e(B), \sigma(A) = \sigma(B) \).
ACKNOWLEDGEMENT

The authors would like to express their sincere thanks to Professor Lin Chen for his direction and help.

REFERENCES

10. Lin Chen and Yan Zikun, Bishop's property (β) and essential spectra of quasisimilar operators, to appear in Proc. Amer. Math. Soc. CMP 98:14

Department of Mathematics, Fujian Normal University, Fuzhou, 350007, The People’s Republic of China
E-mail address: xhyan@fjtu.edu.cn