Refinable subspaces of a refinable space
HTML articles powered by AMS MathViewer
- by Douglas P. Hardin and Thomas A. Hogan
- Proc. Amer. Math. Soc. 128 (2000), 1941-1950
- DOI: https://doi.org/10.1090/S0002-9939-99-05297-1
- Published electronically: October 29, 1999
- PDF | Request permission
Abstract:
Local refinable finitely generated shift-invariant spaces play a significant role in many areas of approximation theory and geometric design. In this paper we present a new approach to the construction of such spaces. We begin with a refinable function $\psi :\mathbb {R}\to \mathbb {R}^{m}$ which is supported on $[0,1]$. We are interested in spaces generated by a function $\phi :\mathbb {R}\to \mathbb {R}^{n}$ built from the shifts of $\psi$.References
- C. de Boor and R. DeVore, Partitions of unity and approximation, Proc. Amer. Math. Soc. 93 (1985), no.Β 4, 705β709. MR 776207, DOI 10.1090/S0002-9939-1985-0776207-2
- W. Dahmen, C. A. Micchelli, Biorthogonal wavelet expansions, Constr. Approx. 13 (1997), 293β328.
- Ingrid Daubechies and Jeffrey C. Lagarias, Two-scale difference equations. II. Local regularity, infinite products of matrices and fractals, SIAM J. Math. Anal. 23 (1992), no.Β 4, 1031β1079. MR 1166574, DOI 10.1137/0523059
- T. N. T. Goodman, S. L. Lee, Refinable vectors of spline functions, Mathematical Methods for Curves and Surfaces II (M. DΓ¦hlen, T. Lyche, L. L. Schumaker, eds.), Vanderbilt University Press, Nashville & London, 1997, pp. 213β220.
- T. A. Hogan, A note on matrix refinement equations, SIAM J. Math. Anal. 29 (1998), 849β854.
- T. A. Hogan, R.-Q. Jia, Dependency relations among the shifts of a multivariate refinable distribution, Constr. Approx., to appear.
- Rong Qing Jia, The Toeplitz theorem and its applications to approximation theory and linear PDEs, Trans. Amer. Math. Soc. 347 (1995), no.Β 7, 2585β2594. MR 1277117, DOI 10.1090/S0002-9947-1995-1277117-8
- Rong-Qing Jia, Shift-invariant spaces on the real line, Proc. Amer. Math. Soc. 125 (1997), no.Β 3, 785β793. MR 1350950, DOI 10.1090/S0002-9939-97-03586-7
- Rong-Qing Jia, Shift-invariant spaces and linear operator equations, Israel J. Math. 103 (1998), 259β288. MR 1613580, DOI 10.1007/BF02762276
- Rong-Qing Jia, Stability of the shifts of a finite number of functions, J. Approx. Theory 95 (1998), no.Β 2, 194β202. MR 1652860, DOI 10.1006/jath.1998.3215
- Rong Qing Jia, Multiresolution of $L_p$ spaces, J. Math. Anal. Appl. 184 (1994), no.Β 3, 620β639. MR 1281533, DOI 10.1006/jmaa.1994.1226
- Rong-Qing Jia, S. D. Riemenschneider, and Ding-Xuan Zhou, Vector subdivision schemes and multiple wavelets, Math. Comp. 67 (1998), no.Β 224, 1533β1563. MR 1484900, DOI 10.1090/S0025-5718-98-00985-5
- Q. Jiang, Z. Shen, On existence and weak stability of matrix refinable functions, Constr. Approx., to appear.
- Wayne Lawton, S. L. Lee, and Zuowei Shen, Characterization of compactly supported refinable splines, Adv. Comput. Math. 3 (1995), no.Β 1-2, 137β145. MR 1314906, DOI 10.1007/BF03028364
- Charles A. Micchelli, Mathematical aspects of geometric modeling, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 65, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995. MR 1308048, DOI 10.1137/1.9781611970067
- Charles A. Micchelli and Hartmut Prautzsch, Uniform refinement of curves, Linear Algebra Appl. 114/115 (1989), 841β870. MR 986909, DOI 10.1016/0024-3795(89)90495-3
- C. A. Micchelli and H. Prautzsch, Refinement and subdivision for spaces of integer translates of a compactly supported function, Numerical analysis 1987 (Dundee, 1987) Pitman Res. Notes Math. Ser., vol. 170, Longman Sci. Tech., Harlow, 1988, pp.Β 192β222. MR 951929
- C. A. Micchelli, T. Sauer, Regularity of multiwavelets, Advances in Comp. Math. 7 (1997), 455-545.
Bibliographic Information
- Douglas P. Hardin
- Affiliation: Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240
- MR Author ID: 81245
- ORCID: 0000-0003-0867-2146
- Email: hardin@math.vanderbilt.edu
- Thomas A. Hogan
- Affiliation: Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240
- Email: hogan@math.vanderbilt.edu
- Received by editor(s): February 4, 1998
- Received by editor(s) in revised form: August 5, 1998
- Published electronically: October 29, 1999
- Additional Notes: This research was partially supported by a grant from the NSF and a grant from the Vanderbilt University Research Council.
- Communicated by: David R. Larson
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 1941-1950
- MSC (1991): Primary 39A10, 39B62, 42B99, 41A15
- DOI: https://doi.org/10.1090/S0002-9939-99-05297-1
- MathSciNet review: 1662241