Reduction in principal fiber bundles: Covariant Euler-Poincaré equations
HTML articles powered by AMS MathViewer
- by Marco Castrillón López, Tudor S. Ratiu and Steve Shkoller
- Proc. Amer. Math. Soc. 128 (2000), 2155-2164
- DOI: https://doi.org/10.1090/S0002-9939-99-05304-6
- Published electronically: November 1, 1999
- PDF | Request permission
Abstract:
Let $\pi :P\rightarrow M^n$ be a principal $G$-bundle, and let ${\mathcal {L}}:J^1P \rightarrow \Lambda ^n(M)$ be a $G$-invariant Lagrangian density. We obtain the Euler-Poincaré equations for the reduced Lagrangian $l$ defined on ${\mathcal C}(P)$, the bundle of connections on $P$.References
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- David J. Eck, Gauge-natural bundles and generalized gauge theories, Mem. Amer. Math. Soc. 33 (1981), no. 247, vi+48. MR 632164, DOI 10.1090/memo/0247
- J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), no. 1, 1–68. MR 495450, DOI 10.1112/blms/10.1.1
- Pedro L. García, Gauge algebras, curvature and symplectic structure, J. Differential Geometry 12 (1977), no. 2, 209–227. MR 650115
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1963. MR 0152974
- J. Marsden, G. Patrick, and S. Shkoller, Multisymplectic geometry, variational integrators, and nonlinear PDES, Comm. Math. Phys., to appear.
- Jerrold E. Marsden and Tudor S. Ratiu, Introduction to mechanics and symmetry, Texts in Applied Mathematics, vol. 17, Springer-Verlag, New York, 1994. A basic exposition of classical mechanical systems. MR 1304682, DOI 10.1007/978-1-4612-2682-6
Bibliographic Information
- Marco Castrillón López
- Affiliation: Departmento de Geometría y Topología, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Email: mcastri@mat.ucm.es
- Tudor S. Ratiu
- Affiliation: Departement de Mathematiques, Ecole Polytechnique federale, Lausanne, CH - 1015 Lausanne, Switzerland
- Email: ratiu@masg1.epfl.ch
- Steve Shkoller
- Affiliation: CNLS, MS-B258, Los Alamos, New Mexico 87545; CDS, California Institute of Technology, 107-81, Pasadena, California 91125
- Address at time of publication: Department of Mathematics, University of California, Davis, California 95616
- MR Author ID: 353659
- Email: shkoller@math.ucdavis.edu
- Received by editor(s): August 24, 1998
- Published electronically: November 1, 1999
- Communicated by: Roe Goodman
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 2155-2164
- MSC (1991): Primary 53C05, 53C10
- DOI: https://doi.org/10.1090/S0002-9939-99-05304-6
- MathSciNet review: 1662269