The length of $C^\ast$-algebras of $\mathrm {b}$-pseudodifferential operators
HTML articles powered by AMS MathViewer
- by Robert Lauter
- Proc. Amer. Math. Soc. 128 (2000), 1955-1961
- DOI: https://doi.org/10.1090/S0002-9939-99-05532-X
- Published electronically: November 23, 1999
- PDF | Request permission
Abstract:
We compute the length of the $C^{*}$-algebra generated by the algebra of b-pseudodifferential operators of order $0$ on compact manifolds with corners.References
- Jacques Dixmier, Les $C^{\ast }$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars Éditeur, Paris, 1969 (French). Deuxième édition. MR 0246136
- Alexander Dynin, Inversion problem for singular integral operators: $C^{\ast }$-approach, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), no. 10, 4668–4670. MR 507929, DOI 10.1073/pnas.75.10.4668
- B. Gramsch. Some homogeneous spaces in the operator theory and $\Psi$-algebras. In Tagungsbericht Oberwolfach 42/81 – Funktionalanalysis: $C^{*}$-Algebren, 1981.
- R. Lauter. On the existence and structure of $\Psi ^{*}$-algebras of totally characteristic operators on compact manifolds with boundary. Preprint Nr. 12/97, Fachbereich Mathematik, Johannes Gutenberg-Universität Mainz, October 1997. To appear in J. Funct. Anal.
- R. Lauter. O predstavleniyah $\Psi ^{*}$- i $C^*$- algebr psevdodifferentsial’nyh operatorov na mnogoobraziyah s vershinami. In N. N. Ural’tseva, editor, Nelineinye uravneniya s chastnymi proizvodnymi i teoriya funktsii, volume 18 of Problemy matematicheskogo analiza, pages 85–117. Sankt-Peterburgskii universitet, November 1998. in Russian.
- P. A. Loya. On the b-pseudodifferential calculus on manifolds with corners. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, 1998.
- R. B. Melrose. Analysis on manifolds with corners. in preparation.
- Richard B. Melrose, Transformation of boundary problems, Acta Math. 147 (1981), no. 3-4, 149–236. MR 639039, DOI 10.1007/BF02392873
- Richard B. Melrose, The Atiyah-Patodi-Singer index theorem, Research Notes in Mathematics, vol. 4, A K Peters, Ltd., Wellesley, MA, 1993. MR 1348401, DOI 10.1016/0377-0257(93)80040-i
- R. B. Melrose and V. Nistor. K-theory of $C^{*}$-algebras of b-pseudodifferential operators. Geometric and Functional Analysis, 8:88–122, 1998.
- Richard B. Melrose and Paolo Piazza, Analytic $K$-theory on manifolds with corners, Adv. Math. 92 (1992), no. 1, 1–26. MR 1153932, DOI 10.1016/0001-8708(92)90059-T
- B. A. Plamenevskiĭ and V. N. Senichkin, Representations of $C^*$-algebras generated by pseudodifferential operators in weighted spaces, Wave propagation. Scattering theory (Russian), Probl. Mat. Fiz., vol. 12, Leningrad. Univ., Leningrad, 1987, pp. 165–189, 259 (Russian). MR 923977
- B. A. Plamenevskiĭ and V. N. Senichkin, Solvable operator algebras, Algebra i Analiz 6 (1994), no. 5, 1–87 (Russian); English transl., St. Petersburg Math. J. 6 (1995), no. 5, 895–968. MR 1318302
- B. A. Plamenevskij and V. N. Senichkin, On composition series in algebras of pseudodifferential operators and in algebras of Wiener-Hopf operators, Schrödinger operators, Markov semigroups, wavelet analysis, operator algebras, Math. Top., vol. 11, Akademie Verlag, Berlin, 1996, pp. 373–404. MR 1409838
- B. A. Plamenevskij and V. N. Senichkin. Pseudodifferential operators on manifolds with singularities. Preprint, in Russian, 1997.
Bibliographic Information
- Robert Lauter
- Affiliation: Fachbereich 17 - Mathematik, Universität Mainz, D-55099 Mainz, Germany
- Email: lauter@mathematik.uni-mainz.de
- Received by editor(s): June 23, 1998
- Received by editor(s) in revised form: August 12, 1998
- Published electronically: November 23, 1999
- Additional Notes: This work was supported by a scholarship of the German Academic Exchange Service (DAAD) within the Hochschulsonderprogramm III von Bund und Ländern.
- Communicated by: David R. Larson
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 1955-1961
- MSC (2000): Primary 46L85, 58G40; Secondary 35S35, 46L80
- DOI: https://doi.org/10.1090/S0002-9939-99-05532-X
- MathSciNet review: 1694871