ON BURGESS’S THEOREM AND RELATED PROBLEMS

HISAO KATO AND XIANGDONG YE

(Communicated by Alan Dow)

Abstract. Let G be a graph. We determine all graphs which are G-like. We also prove that if G_i $(i = 1, 2, \ldots, m)$ are graphs, then in order that each G_i-like $(i = 1, 2, \ldots, m)$ continuum M be n-indecomposable for some $n = n(M)$ it is necessary and sufficient that if K is a graph, then K is not G_i-like for some integer i with $1 \leq i \leq m$. This generalizes a well known theorem of Burgess.

1. Introduction

In this paper we study the structures of graph-like graphs and the structures of a finitely-many-graphs-like continua. Namely, if G is a graph, we determine all graphs which are G-like. We also prove that if G_i $(i = 1, 2, \ldots, m)$ are graphs, then in order that each G_i-like $(i = 1, 2, \ldots, m)$ continuum M be n-indecomposable for some $n = n(M)$ it is necessary and sufficient that if K is a graph, then K is not G_i-like for some integer i with $1 \leq i \leq m$. This generalizes a well known result of Burgess. The results will be used in a forthcoming paper by the same authors in determining the set of periods of a piecewise monotone map of a graph (see [LXY] for some background).

By a continuum we mean a non-empty connected compact metric space. A continuum M is decomposable (resp., indecomposable) if it is (resp., is not) the union of its two proper subcontinua. Let X, Y be continua and d be a metric on X. A continuous surjective map $f : X \rightarrow Y$ is an ϵ-map if for each $y \in Y$, $\text{diam}(f^{-1}(y)) < \epsilon$. If for each $\epsilon > 0$ there is an ϵ-map from X onto Y, then we say X is Y-like.

A continuum M is said to be the essential sum of some collection of its subcontinua if the union of the collection is M and there is no element of the collection such that it is contained in the union of the rest of the elements from the collection. If $n \in \mathbb{N}$ and the continuum M is the essential sum of n continua and not the essential sum of $n + 1$ continua, then M is said to be n-indecomposable. It is known that for any such continuum M, there is a unique collection consisting of n indecomposable continua having M as their essential sum ([BI]).

By a graph we mean a connected compact one-dimensional branch manifold. Let G be a graph. For $x \in G$, there is a closed connected neighbourhood V of x such
that if \(V' \) is a closed connected neighbourhood of \(x \) contained in \(V \), then \(V' \) is homeomorphic to \(V \).

Proof. Let \(G \) be a graph. If \(V \) is a graph-like, then the continuum is a graph, and hence generalize some result of [MS]. We start with the following definition.

Definition 2.1. Let \(G, K \) be graphs. We say that \(K \approx G \) if there are pairwise disjoint subgraphs of \(G \) such that \(K \) is homeomorphic to the graph obtained by shrinking the subgraphs to points.

An immediate observation is

Remark 2.2. Let \(G, K \) be graphs. If \(K \approx G \), then \(E(K) + B(K) \leq E(G) + B(G) \).

With the above definition we now show the main result of the section.

Theorem 2.3. Let \(G \) be a graph. Then a graph \(K \) is graph-like if and only if \(K \approx G \).

Proof. Let \(d \) be a metric on \(K \). First we show that if \(K \approx G \), then \(K \) is graph-like. Assume that \(K \) is the graph obtained by shrinking subgraphs \(G_1, \ldots, G_n \) (of \(G \)) to points.

Let \(q : G \to K \) be the quotient map and \(q(G_i) = \{ x_i \} \), \(1 \leq i \leq n \). Take a connected closed small neighbourhood \(U_i \) of \(x_i \) which is homeomorphic to \(n_i \)-star, where \(n_i = Val(x_i) \). Furthermore, take a connected closed small neighbourhood \(V_i \) of \(G_i \) which has \(n_i \)-end points. Let \(\varepsilon > 0 \). Then an \(\varepsilon \)-map \(g \) from \(K \) onto \(G \) can be obtained by taking the union of \(g|_{K \setminus U_i} = q^{-1}_{\mid G_i} V_i \), with an easily constructed \(\varepsilon \)-map from \(U_i \) onto \(V_i \), \(1 \leq i \leq n \).

Now we prove that if \(K \) is graph-like, then \(K \approx G \).

Let \(n \) be the number of edges of \(K \). In each edge \(E_i \) of \(K \) choose a free arc \(A_i \). Let \(l = V(G) + 1 \) and

\[
\varepsilon_1 = \min \{ d(A_i, A_j) : 1 \leq i < j \leq n \}, \quad \varepsilon_2 = \min \{ \frac{diam(A_i)}{2l} : 1 \leq i \leq n \}.
\]

Let \(0 < \varepsilon < \min \{ \varepsilon_1, \varepsilon_2 \} \) and \(g_\varepsilon : K \to G \) be an \(\varepsilon \)-map. By dividing \(A_i \) into \(2l \) subintervals with length \(\frac{diam(A_i)}{2l} \) we get that there is a subinterval \(A'_i \) such that \(g_\varepsilon(A'_i) \) is a free arc of \(G \).
Let C_1, \ldots, C_p be the closures of connected components of $K \setminus (\bigcup_{i=1}^n A'_i)$. Then we have

1. C_i is a star;
2. $G = \bigcup_{i=1}^p g_e(C_i) \cup \bigcup_{i=1}^n g_e(A'_i)$;
3. $g_e(C_i) \cap g_e(C_j) = \emptyset$ for $i \neq j$;
4. if $C_i \cap A'_j \neq \emptyset$, then $g_e(C_i) \cap g_e(A'_j)$ is non-empty and a proper subinterval (may be degenerate) of $g_e(A'_j)$. Moreover, $E(g_e(C_i)) \geq E(C_i)$;
5. $g_e(A'_i) \cap g_e(A'_j) = \emptyset$ for $i \neq j$.

Hence a homeomorphic copy of K can be obtained by shrinking $g_e(C_i)$, $1 \leq i \leq p$, to points. That is, $K \leq G$.

Continua M_1 and M_2 are said to be quasi-homeomorphic if M_1 is M_2-like and M_2 is M_1-like. It is well known that there are quasi-homeomorphic continua which are not homeomorphic (see for instance [K]). Contrary to this situation we have

Corollary 2.4. Let G and K be graphs. Then G and K are homeomorphic if and only if G and K are quasi-homeomorphic.

Proof. Assume that G and K are quasi-homeomorphic. By Theorem 2.3 and Remark 2.2 we get that $E(K) + B(K) = E(G) + B(G)$. It is easy to say that G and K should be homeomorphic by Theorem 2.3.

In [MS] the authors show that if a locally connected continuum M is arc-like (circle-like), then M is an arc (a circle). Generalizing this result we have

Theorem 2.5. Let M be a locally connected continuum and G be a graph. Then M is G-like if and only if M is a graph and $M \leq G$.

To prove it we need the following simple lemma and the definition of the order of a point in a continuum (see [N], pp. 141–142).

Lemma 2.6. Let G, K be graphs. If K is G-like, then there is an ϵ-map $f_\epsilon : K \to G$ such that $f_\epsilon(b(K)) \subset b(G)$.

Proof. If there is $b \in b(K)$ such that $f_\epsilon(b) \notin b(G)$ for $\epsilon \to 0$, then the image of some n-star (a small closed connected neighbourhood of b with $n = \text{Val}(b)$) under f_ϵ is an arc. That is, n-star ($n \geq 3$) is arc-like. This is impossible by Theorem 2.3. Hence the lemma follows.

Proof of Theorem 2.5. We need to show that if M is G-like, then M is a graph.

As M is locally connected, M is path connected. Assume the contrary. That is, M is not a graph. Then there are $n = B(G) + 1$ different points x_1, \ldots, x_n of M such that $\text{Ord}(x_i, M) \geq 3$ ([N], p. 144]). Then there are disjoint graphs $G_i \subset M$, $1 \leq i \leq n$, such that each G_i has at least one branch point and $x_i \in G_i$. Applying Lemma 2.6 we get that G has at least n branch points, a contradiction.

3. A generalization of Burgess’s theorem

A well known result in continuum theory is that if a continuum is both arc-like and circle-like, then M is indecomposable or 2-indecomposable. In this section we will generalize this result by considering the structure of G_i-like ($i = 1, \ldots, m$) continuum M. It turns out that in order that M should be n-indecomposable for some $n = n(M) \in \mathbb{N}$, G_i ($i = 1, \ldots, m$) must have no common “shape”. To do this we need the following lemma.
Lemma 3.1. Let T be a tree and be an essential sum of the subtrees of $\{T_1, \ldots, T_m\}$ for some $m \in \mathbb{N}$. Then there are at most $\sum_{t \in b(T)} \text{Val}(t)$ elements of $\{T_1, \ldots, T_m\}$ which contain some points of $b(T)$.

Proof. Assume that d is a metric on T. For each $b \in b(T)$ let $S(b)$ be the union of edges of T containing b and $e(S(b)) = \{e^1_b, \ldots, e^k_b\}$. Furthermore, let $A = \{T_1, \ldots, T_m\}$. For each e^i_b with $b \in b(T)$ and $1 \leq i \leq k$ choose $T^i_b \in A$ such that

$$d(e^i_b, T^i_b) = \min\{d(e^i_b, S) : S \in A \text{ and } S \text{ contains } b\}.$$

We claim that if $S \in A$ and S contains some point of $b(T)$, then $S \subset \bigcup_{i=1}^{k^b} \bigcup_{b \in b(T)} T^i_b$. Assume the contrary. That is, $S \not\subset \bigcup_{i=1}^{k^b} \bigcup_{b \in b(T)} T^i_b$. Then there is $x \in S \cap (T \setminus b(T))$ with $x \not\subset \bigcup_{i=1}^{k^b} \bigcup_{b \in b(T)} T^i_b$. Let $E = [v_1, v_2]$ be the edge of T containing x, and without loss of generality we assume that $v_1 \in S \cap b(T)$ and $v_2 = e^j_b$. By the choice of T^i_b we have that $x \in T^i_b$, a contradiction. This proves the claim.

As T is the essential sum of A, we have that there are at most $\sum_{t \in b(T)} \text{Val}(t)$ elements of A which contain some points of $b(T)$.

Corollary 3.2. Let T be a tree and an essential sum of the subtrees of $\{T_1, \ldots, T_m\}$ with $m = \sum_{t \in b(T) \cup e(T)} \text{Val}(t)$ for some $k \in \mathbb{N}$. Then there are at least k elements of $\{T_1, \ldots, T_m\}$ which are free arcs of T. Furthermore, there are at least $[(k+1)/2]$ pairwise disjoint free arcs from $\{T_1, \ldots, T_m\}$, where $[\ast]$ is the integer part of \ast.

Proof. The first conclusion is an immediate consequence of Lemma 3.1. And the second one can be proved easily by induction on k.

Note that we will use $\lim \{X, f_i\}$ to denote the inverse limit space of $f_i : X \rightarrow X$, $i \in \mathbb{N}$.

Theorem 3.3. Let T be a tree and G be a graph such that no free arc of G separates G. If M is a continuum which is both T-like and G-like, then M is n-indecomposable for some $n \leq n_0 = 2l + \sum_{t \in b(T) \cup e(T)} \text{Val}(t)$, where $l = B(G)$.

Proof. Assume that M is an essential sum of subcontinua M_1, \ldots, M_{n_0+1}. Let $M = \lim \{T, f_i\} = \lim \{G, g_i\}$, and $p_i : M \rightarrow T$ and $q_i : M \rightarrow G$ be the i-th projection, $i \in \mathbb{N}$. It is easy to see that for i large enough, T is an essential sum of subtrees of $\{p_i(M_1), \ldots, p_i(M_{n_0+1})\}$. By Corollary 3.2 there are at least $l+1$ elements $\{p_i(M_{i_1}), \ldots, p_i(M_{i_{l+1}})\}$ of $\{p_i(M_1), \ldots, p_i(M_{n_0+1})\}$ which are pairwise disjoint free arcs. Hence $M_{i_1}, \ldots, M_{i_{l+1}}$ are pairwise disjoint and each M_i separates M.

Thus for j large enough $\{q_j(M_{i_1}), \ldots, q_j(M_{i_{l+1}})\}$ are pairwise disjoint. By the choice of l, there is $1 \leq h \leq l+1$ such that $q_j(M_{i_h})$ is a free arc of G for infinitely many j. By the assumption on G, $q_j(M_{i_h})$ does not separate G.

Let N_1, N_2 be the two connected components of $\bigcup_{i=1, i \neq h}^{n_0+1} M_i$ and $\epsilon < d(N_1, N_2)$. Choose j_0 such that q_j is an ϵ-map for $j \geq j_0$. As $q_j(M_{i_h})$ does not separate G, there exist $x \in N_1$ and $y \in N_2$ such that $q_j(x) = q_j(y)$, a contradiction.

Corollary 3.4 (Burgess). If a continuum is both arc-like and circle-like, then M is either indecomposable or the union of two indecomposable subcontinua.

Proof. As $E([0,1]) = 2$ and $B(S^1) = 0$, the corollary follows from Theorem 3.3 immediately.
The following remark and example demonstrate that our result is more general than the result of Burgess. Let X and Y be two topological spaces. A continuous map $f : X \to Y$ is null homotopic provided that f is homotopic to a constant map from X into Y.

Remark 3.5. Let G be a graph such that no free arc of G separates G. If $f : G \to G$ is a surjective map and f is null homotopic, then the inverse limit $M = \lim \{G, f\}$ is n-indecomposable for some $n \leq n_0$, where n_0 is the number defined in Theorem 3.3.

Proof. Let \tilde{G} be the universal cover of G. Then \tilde{G} is an infinite tree such that each connected compact subset of \tilde{G} is a finite tree. Let $p : \tilde{G} \to G$ be the covering projection. Since f is null homotopic, there is a lifting $L : G \to \tilde{G}$ with $p \circ L = f$. Put $T = L(G)$. Then T is a finite tree and $p(T) = f(G) = G$. Set $F = L \circ p$. Then $p \circ F = f \circ p$, $F \circ L = L \circ f$ and $F(T) = T$.

Set $\tilde{p} = p|_T : T \to G$, $F' = F|_T : T \to T$, and $L' = L : G \to T$. Let $L_\infty' : M \to \lim \{T, F'\}$, $f_\infty : M \to M$ and $p_\infty' : \lim \{T, F'\} \to M$ be the induced maps (see [N] p. 26). Then $\tilde{p}_\infty' \circ L_\infty' = f_\infty$. Since f_∞ is a homeomorphism, L_∞' is injective. It is clear that L_∞' is surjective. Hence L_∞' is a homeomorphism. Then M is T-like and hence M is both G-like and T-like. By Theorem 3.3, M is n-indecomposable for some $n \leq n_0$. \square

Example. For $m \in \mathbb{N}$ and each $1 \leq i \leq m$, let K_i be the copy of the Knaster’s indecomposable continuum and p be the end point of K. Let M be the one point union of (K_i, p), $i = 1, \ldots, m$. Then K is m-indecomposable, and K is m-od-like and G-like, where G is the one point union of m circles.

With the above preparation now we prove the main result of this section. Note that for any finite graphs G_1, \ldots, G_m ($m \in \mathbb{N}$), there are many continua which are G_i-like for each i, since we can use inverse systems whose terms are G_i (each G_i appears infinitely many times) and arbitrary surjective maps between them.

Theorem 3.6. Let G_i ($1 \leq i \leq m$) be graphs. Then in order that each G_i-like $(i = 1, \ldots, m)$ continuum M be n-indecomposable for some $n = n(M) \in \mathbb{N}$ it is necessary and sufficient that if K is a graph, then K is not G_i-like for some integer i with $1 \leq i \leq m$.

Proof. (Necessity) It is obvious.

(Sufficiency) It is easy to see that $m \geq 2$. If each G_i contains a simple closed curve, then by Theorem 2.3 S^1 is G_i-like, $i = 1, \ldots, m$. If each G_i is separated by some free arc, then by Theorem 2.3 $[0, 1]$ is G_i-like, $i = 1, \ldots, m$. Hence if there is no graph K which is G_i-like ($i = 1, \ldots, m$), then there are i_0, j_0 such that G_{i_0} is a tree and G_{j_0} is a graph such that each free arc of G_{j_0} does not separate G_{j_0}. According to Theorem 3.3, M is n-indecomposable for some $n = n(M) \in \mathbb{N}$. \square

The following related problems remain open:

Question 1. Let T be a tree and G be a graph such that no free arc of G separates G. Let

$$N(T, G) = \{n : M$ is both T-like and G-like, and is n-indecomposable$\}.$$

Is it true that $N(T, G) = \{1, \ldots, n_0\}$ for some $n_0 \leq 2B(G) + \sum_{t \in \mathcal{M}(T)} Val(t)$? If not, determine $N(T, G)$.

Question 2. Let T be a tree and G be a graph such that no free arc of G separates G. Let M be a continuum which is T-like. Is it true that if M is n-indecomposable for some $n \in N(T, G)$, then M is G-like?

Acknowledgment

The authors would like to thank the referee for helpful comments. The second author wishes to thank Tokyo Metropolitan University and Tsukuba University for the hospitality when visiting there.

References

Institute of Mathematics, University of Tsukuba, Tsukuba-Shi Ibaraki, 305, Japan
E-mail address: hisakato@sakura.cc.tsukuba.ac.jp

Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China
E-mail address: yexd@math.ustc.edu.cn