AN ARITHMETIC OBSTRUCTION
TO DIVISION ALGEBRA DECOMPOSABILITY

ERIC S. BRUSSEL

(Communicated by Ken Goodearl)

Abstract. This paper presents an indecomposable finite-dimensional division
algebra of p-power index that decomposes over a prime-to-p degree field exten-
sion, obtained by adjoining p-th roots of unity to the base. This shows that
the theory of decomposability has an arithmetic aspect.

Suppose F is a field and D is an indecomposable F-division algebra, that is, a
division algebra that cannot be expressed as the tensor product of two nontrivial
F-division algebras. It is easy to see that the (Schur) index of D must be a power
of some prime p. In “Problem 6” of [Sa], Saltman asks if in general D remains
indecomposable upon arbitrary prime-to-p extension. At issue is the nature of
indecomposability, in particular whether or not it is “geometric”. For example in
[K], Karpenko showed a certain generic class of division algebras are indecomposable
by computing the degrees of cycles on their Brauer-Severi varieties. As noted in [K],
it is immediate from the geometric nature of the proof that these algebras remain
indecomposable over all prime-to-p extensions.

This paper presents an indecomposable division algebra that decomposes over
a prime-to-p extension, namely the cyclotomic extension defined by p-th roots of
unity. Thus it is proved that (in)decomposability can have an arithmetic aspect.

Let p be an odd prime of \mathbb{Q}, let k be a number field that does not contain a p^{th}
root of unity, and let $k[s, t]$ be the polynomial ring in two variables over k. Define

$$v : k[s, t] \to \mathbb{Z} \oplus \mathbb{Z},
\quad f \mapsto (a, b)$$

where b is smallest such that $f \in (t^b)$ and a is smallest such that $f \in (s^a, t^{b+1})$.
The map v is a valuation, with value group $\mathbb{Z} \oplus \mathbb{Z}$ ordered reverse lexicographically,
so $(a, b) < (a', b')$ if $b < b'$, or if $b = b'$ and $a < a'$. The field of iterated power series

$$F = k((s))((t))$$
is Henselian with respect to v, with valuation ring

$$R = k[[s]] + t k((s))[[t]] \subset k((s))[\![t]\!] .$$

R is a non-Noetherian 2-dimensional Henselian local ring, with maximal ideal $(s) =
(s, t)$ and residue field k. The ideal (s) properly contains the (infinitely generated)
prime ideal $t k((s))[[t]] = (t, \frac{t}{s}, \frac{t}{s^2}, \ldots)$.

Received by the editors June 10, 1998 and, in revised form, October 6, 1998.
1991 Mathematics Subject Classification. Primary 16K20; Secondary 11R37.

©2000 American Mathematical Society
For any field \(l \), let \(X(l) \) denote the character group of \(l \), consisting of all continuous homomorphisms from the Galois group \(G_l \) to the group of roots of unity \(\mu(\mathbb{C}) \). If \(\xi \in X(l) \), let \(l(\xi)/l \) denote the cyclic extension (of degree \(|\xi| \)) determined by \(\xi \). Let \(\langle \psi, \theta \rangle \subset X(l) \) denote the subgroup determined by \(\psi \) and \(\theta \). If \(G \subset X(l) \) is any subgroup, let \(l(G) \) denote the composite of the extensions determined by the elements of \(G \).

Let \(\mu_n \) denote the \(n \)-th roots of unity in \(\mathbb{C} \). By Kummer theory if \(\mu_n \subset l' \), there is an isomorphism

\[
l/l^{\ast n} \cong X(l)_n
\]

where \(X(l)_n \) denotes the \(n \)-torsion of \(X(l) \). If \(\xi \in X(l)_n \) is represented by \(u \bmod l^{\ast n} \), then \(k(\xi) \cong l(u^{1/n}) \).

In the Brauer group \(Br(l) \) let \((\xi, t) \) denote the cyclic element determined by character \(\xi \) and element \(t \in l' \). If \(\mu_n \subset l \) and \(\xi \in X(l)_n \) is represented by \(u \bmod l^{\ast n} \), then \((\xi, t) = (u, t)_n \), the symbol defined by \(u \) and \(t \).

There is an exact sequence

\[
(1) \quad 0 \rightarrow Br(k) \rightarrow Br(F) \xrightarrow{T} \prod X(k((s))) \bigoplus X(k((t))) \xrightarrow{ord} \mu(k) \rightarrow 0.
\]

The maps: \(Br(k) \rightarrow Br(F) \) is the usual restriction. \(T \) is the sum of the two residue maps corresponding to the discrete valuations \(t \) (on \(F = k((s)((t))) \)) and \(s \) (on \(k((t))(s)) \)). The natural isomorphism \(Br(k((s))((t))) \cong Br(k((t))(s)) \) shows both are defined on \(Br(F) \). Finally, \(ord \) is the ramification with respect to the valuation \(v \).

Exactness of (1) is proved in [B] by iteratively applying Witt’s theorem ([Sc]), which describes the Brauer group of discretely Henselian fields with perfect residue field. Briefly, the kernel of \(T \) consists of the \(v \)-unramified elements \(\alpha \) of \(Br(F) \), and since \(R \) is Henselian this is \(Br(k) \). The residue maps are separately surjective, and thus the image of \(T \) and the kernel of \(ord \) both consist of elements of the form \((\psi + s^{m/n}, \theta + t^{-m/n}) \) where \(\psi, \theta \in X(k) \), \(n = |\mu(k)| \), \(m \in \{0, 1, \ldots, n - 1\} \), and \(s^{m/n} \) and \(t^{-m/n} \) stand for the characters they determine under the Kummer map.

By Witt’s theorem, (1) “splits”, so that any \(\delta \in Br(F) \) has the form

\[
(2) \quad \delta = \alpha + (\psi, s) + (\theta, t) + m(s, t)_n
\]

with \(\alpha \in Br(k) \), \(\psi, \theta \in X(k) \), \(n = |\mu(k)| \), and \(m \in \{0, 1, \ldots, n - 1\} \).

In the following write \(D(\delta) \) for the division algebra underlying a Brauer element \(\delta \). Write \(ind(D) \) and \(per(D) \) for the index and period of \(D \), respectively. Assume always that \(p \) is an odd prime and \(\mu_p \not\subset F^* \). Then \(\mu(k)(p) \) is trivial and so the symbol term in (2) is trivial. More generally, for all \(\delta \in Br(F) \) of the form \(\delta = \alpha + (\psi, s) + (\theta, t) \), the index formula is

\[
(3) \quad ind(\delta) = |G| ind(\alpha^{k(G)})
\]

where \(G = \langle \psi, \theta \rangle \) and \(\alpha^{k(G)} \) is the restriction of \(\alpha \) to \(Br(k(G)) \). This and a more general index formula are proved by iteratively applying Nakayama’s index formula for discretely Henselian fields ([B]).

Theorem. Let \(p \) be an odd prime, \(k \) a number field not containing \(\mu_p \), and let \(F \) be the twice iterated power series field above. Then there exists an indecomposable \(F \)-division algebra \(D \) of period \(p^4 \) and index \(p^5 \) that becomes decomposable over the prime-to-\(p \) extension \(k(\mu_p) \).
Proof. Select three primes q, q', and p of k, such that:

\[\mu_{p^2} \subseteq k_q, k_{q'} \]
\[\mu_p \not\subseteq k_p. \]

Let ψ_q and $\psi_{q'}$ be totally ramified (local) characters of order p^2, let θ_q and $\theta_{q'}$ be unramified of order p^2, let ψ_p be trivial, and let θ_p be unramified of order p. By Grunwald-Wang’s Theorem ([AT]), there exist (global) characters ψ and θ with

\[|\psi| = |\theta| = p^2 \]

and with the above restrictions at p, q, and q'. Set $G = \langle \psi, \theta \rangle$. The groups $\langle \psi_q \rangle$ and $\langle \theta_q \rangle$ are disjoint in $X(k)$, so $|G_q| = p^4$, and similarly $|G_{q'}| = p^4$. Therefore $\langle \psi \rangle$ and $\langle \theta \rangle$ are disjoint in $X(k)$, and $|G| = p^4$. Let α be the unramified element of $\text{Br}(F)$ with invariants

\[\text{inv}(\alpha_q) = 1/p^4, \]
\[\text{inv}(\alpha_p) = 1/p^2, \]
\[\text{inv}(\alpha_{q'}) = 1 - \text{inv}(\alpha_q) - \text{inv}(\alpha_p). \]

Let

\[D = D(\alpha + (\psi, s) + (\theta, t)), \]

as per (2). By direct computation,

\[\text{ind}(D) = |G| \cdot \text{ind}(\alpha^{G(G)}) = p^4 \cdot p = p^5, \]
\[\text{per}(D) = \text{lcm} \{ \text{ind}(\alpha), |\psi|, |\theta| \} = p^4. \]

The index follows since $|G| = p^4$ and $k(G)$ splits α at every prime except p, while $\text{ind}(\alpha^{G(G)}) = p$. The period uses (1) and the fact that period equals index in $\text{Br}(k)$.

Claim 1. D is indecomposable. Suppose not; let

\[D \cong D_1 \otimes D_2 \]

be a nontrivial decomposition. By dimension count $\text{ind}(D) = \text{ind}(D_1) \cdot \text{ind}(D_2)$. In the following, let the subscripts “1” and “2” signify association with D_1 and D_2. By (3),

\[|G| \text{ind}(\alpha^{k(G)}) = |G_1| \text{ind}(\alpha^{k(G_1)}) \cdot |G_2| \text{ind}(\alpha^{k(G_2)}). \]

Since $\psi = \psi_1 + \psi_2$ and $\theta = \theta_1 + \theta_2$, $G \subseteq G_1 G_2$.

Assume without loss of generality that $\text{ind}(D_1) \leq \text{ind}(D_2)$. Then $\text{ind}(D_1) = p^2$ or p, and $\text{ind}(D_2) = p^3$ or p^4. By (3), $|G_1|$ divides p^2, and since $|G| = p^4$ and $G \subseteq G_1 G_2$, p^2 divides $|G_2|$. Since $\alpha = \alpha_1 + \alpha_2$, $\text{per}(\alpha) = p^4$, and $\text{per}(\alpha_1)$ divides p^2, by abelian group theory $\text{per}(\alpha_2) = p^4$. Therefore $\text{per}(D_2) = p^4$; hence $\text{ind}(D_2) = p^4$, and this forces $\text{ind}(D_1) = p$. It follows that

\[|G_1| \text{ divides } p, \]
\[|G_2| = p^2, p^3, \text{ or } p^4. \]

If $|G_2| = p^2$, then since $G_1 G_2 \supseteq G$ and $|G| = p^4$, necessarily $|G_1| = p^2$, which is not the case. If $|G_2| = p^3$, then again p^2 divides $|G_1|$, because $G_1 G_2$ must contain the disjoint cyclic groups $\langle \theta \rangle$ and $\langle \psi \rangle$ each of which has order p^2. Therefore it must be that $|G_2| = p^4$, and since $\text{ind}(D_2) = p^4$, $\text{ind}(\alpha^{k(G_2)}) = 1$. If G_1 is
trivial, then $G_2 = G$, and G does not split the invariants of α_2 at q, contradicting $\text{ind}(\alpha_2^{k(G_2)}) = 1$. Therefore $|G_1| = p$ and $\text{ind}(\alpha_1^{k(G_1)}) = 1$.

Since G_2 is abelian, $(G_2)_p$ is abelian, and since $\mu_p \not\subseteq k_p$, $(G_2)_p$ is cyclic. By abelian group theory $\text{ind}(\alpha_2)_p = \text{ind}(\alpha_p) = p^2$, since $\text{ind}(\alpha_1)_p \mid p$. Since G_2 splits α_2, p^2 divides $|(G_2)_p|$; hence p^2 divides the group exponent of $(G_2)_p$. But $(G_2)_p \subseteq G_p(G_1)_p$, and the right side has group exponent p. This is a contradiction, proving claim 1.

Claim 2. $D(D \otimes F(\mu_p))$ is decomposable. This will be proved by a construction over $F(\mu_p)$. Since $F(\mu_p)/F$ has prime-to-p degree, the orders, degrees, and ramification behavior of the objects associated to D do not change from D to $D \otimes F(\mu_p)$. In the following, identify p, q, and q' with chosen extensions to $k(\mu_p)$.

Let $\varphi_p \in X(k(\mu_p)_p)$ be totally ramified of order p (existence requires the root of unity), and let φ_q and $\varphi_{q'}$ both be trivial. Let $\varphi \in X(k(\mu_p))$ be a character of order p with these restrictions. Note that θ_p and φ_p are disjoint over $k(\mu_p)_p$, whereas there is only the unramified character over k_p, since $\mu_p \not\subseteq k_p$. Set

$$
\psi_1 = \theta_1 = \varphi,
$$
$$
\psi_2 = \psi^{F(\mu_p)} - \varphi,
$$
$$
\theta_2 = \theta^{F(\mu_p)} - \varphi,
$$
$$
\alpha_2 = \alpha^{F(\mu_p)}.
$$

Then set $D_1 = D(\langle \psi_1, s \rangle + (\theta_1, t))$ and $D_2 = D(\langle \psi_2, s \rangle + (\theta_2, t))$.

A simple check that $\psi^{F(\mu_p)} = \psi_1 + \psi_2$ and $\theta^{F(\mu_p)} = \theta_1 + \theta_2$ shows that $D \otimes F(\mu_p) \sim D_1 \otimes D_2$. To prove $D(D \otimes F(\mu_p)) \equiv D_1 \otimes D_2$ it remains to show that the indexes are multiplicative. The index of D_1 is

$$
\text{ind}(D_1) = |G_1| = |\langle \psi_1, \theta_1 \rangle| = |\langle \varphi \rangle| = p.
$$

The order of $G_2 = \langle \psi_2, \theta_2 \rangle$ is p^4; For

$$
\langle G_2, \varphi \rangle = \langle G^{F(\mu_p)}, \varphi \rangle = \langle \psi^{F(\mu_p)}, \theta^{F(\mu_p)} \rangle, \varphi,
$$

and since $\varphi_p \notin \langle \theta_p, \psi_p \rangle = \langle \theta_p \rangle$, $\varphi \notin G^{F(\mu_p)}$; hence $\varphi \notin G_2$ (else G_2 is a 3 generator group). Therefore $p \cdot |G_2| = p \cdot |G|$; hence $|G_2| = |G| = p^4$. Now compute $\text{ind}(\alpha_2^{k(G_2)})$: At q and q', G_1 is trivial, so $|(G_2)_q| = |G_q| = p^4$ and $|(G_2)_{q'}| = |G_{q'}| = p^4$. At p, G_2 is the noncyclic group $\langle \theta^{F(\mu_p)} \rangle$, φ_p, so $|(G_2)_p| = p^2$.

Therefore, by construction, G_2 splits α_2 at each prime in the locus of α_2, so $\text{ind}(\alpha_{2}^{k(G_2)}) = 1$. Since $|G_2| = p^4$, and $\text{ind}(\alpha_2^{k(G_2)}) = 1$,

$$
\text{ind}(D_2) = p^4.
$$

Therefore $\text{ind}(D \otimes F(\mu_p)) = \text{ind}(D_1)\text{ind}(D_2) = p^6$, and so $D(D \otimes F(\mu_p))$ is decomposable. This proves claim 2, hence the theorem.

Remark. A general criterion for decomposability over F is given in [B].

References

Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322

E-mail address: brussel@mathcs.emory.edu