GENERIC POLYNOMIALS FOR QUASI-DIHEDRAL, DIHEDRAL
AND MODULAR EXTENSIONS OF ORDER 16

ARNE LEDET

(Communicated by David E. Rohrlich)

Abstract. We describe Galois extensions where the Galois group is the quasi-
dihedral, dihedral or modular group of order 16, and use this description to
produce generic polynomials.

Introduction

Let K be a field of characteristic $\neq 2$. Then every quadratic extension of K
has the form $K(\sqrt{a})/K$ for some $a \in K^*$. Similarly, every cyclic extension of
degree 4 has the form $K(\sqrt{r(1+c^2 + \sqrt{1+c^2})})/K$ for suitable $r,c \in K^*$. In other
words: A quadratic extension is the splitting field of a polynomial $X^2 - a$, and a
C_4-extension is the splitting field of a polynomial $X^4 - 2r(1+c^2)X^2 + r^2c^2(1+c^2)$,
for suitably chosen a, c and r in K. This makes the polynomials $X^2 - t$ and
$X^4 - 2t_1(1 + t_2^2)X^2 + t_1^2t_2^2(1 + t_2^2)$ generic according to the following

Definition. Let K be a field and G a finite group, and let t_1, \ldots, t_n and X be
indeterminates over K. A polynomial $F(t_1, \ldots, t_n, X) \in K(t_1, \ldots, t_n)[X]$ is called
a generic (or versal) polynomial for G-extensions over K, if it has the following
properties:

1. The splitting field of $F(t_1, \ldots, t_n, X)$ over $K(t_1, \ldots, t_n)$ is a G-extension.
2. If L/K is a field extension, any G-extension of L is obtained as the splitting
field of $F(a_1, \ldots, a_n, X)$ for suitable $a_1, \ldots, a_n \in L$.

Generic polynomials (and the closely related generic Galois extensions; cf. [Sa])
are a convenient way of describing what G-extensions look like.

In this paper, we construct generic polynomials for the quasi-dihedral, dihedral
and modular group of order 16 over fields of characteristic $\neq 2$. Here, the quasi-
dihedral group of order 16 is the group QD_8 with generators u and v and relations
$u^4 = v^2$ and $vu = u^3v$, the dihedral group of order 16 is the group D_8 with
generators σ and τ and relations $\sigma^8 = \tau^2 = 1$ and $\tau\sigma = \sigma^7\tau$, and the modular
group of order 16 is the group M_{16} with generators u and v and relations $u^8 = v^2 = 1$
and $vu = u^5v$.

Received by the editors September 8, 1998.
2000 Mathematics Subject Classification. Primary 12F12.
This work was supported by a Queen’s University Advisory Research Committee Postdoctoral
Fellowship.
The approach is as follows: We start with a Galois extension \(M/K \) of degree 8, where the Galois group \(G = \text{Gal}(M/K) \) is a homomorphic image of the group \(E \) (\(= \text{QD}_8 \), \(D_8 \) or \(M_{16} \)) we consider. This gives us a Galois theoretical embedding problem: Can we extend this \(G \)-extension to an \(E \)-extension? And if so, how? For the embedding problems we get, the criterion for solvability is that the crossed product algebra \((M, G, c)\) splits, where \(c \) is a factor system representing the group extension

\[1 \rightarrow \mu_2 \rightarrow E \rightarrow G \rightarrow 1. \]

For a proof of this, see e.g. \([K1]\). In all three cases, this algebra is a tensor product of two quaternion algebras and a matrix algebra, meaning that the criterion can be reformulated as an equivalence of quadratic forms. Details on how to find the obstruction can be found in \([Le1]\), and the main reference for this paper is \([Le2]\), where conditions in terms of quadratic forms are given, and solutions to the embedding problems are constructed.

It should be pointed out that the obstructions to realising \(\text{QD}_8 \) given in \([Le1, \text{Ex. 4.1}]\) and in \([Le2, 2.4]\) are not identical, since different maps \(\text{QD}_8 \rightarrow D_4 \) are used. (The more natural map is the one used in \([Le1]\), as well as in \([K1]\). On the other hand, for constructing the solutions the map used in \([Le2]\) is more convenient.) However, the obstruction in \([Le2]\) can be obtained directly from \([Le1, \text{Prop. 4.2}]\). For the other two embedding problems, the obstructions in \([Le1]\) and \([Le2]\) are identical, although they have been rewritten slightly to accommodate the quadratic forms approach. This rewriting was done using \((a, -b) = 1\) (for \(D_8 \)) and \((a, -1) = 1\) (for \(M_{16} \)).

Remark. In \([Bl, \text{Thm. 4.6}]\), Black proves the existence of generic \(D_8 \)-extensions, although a generic polynomial is not explicitly constructed. Indeed, the idea of this paper—using the descriptions of \(\text{QD}_8 \)-, \(D_8 \)- and \(M_{16} \)-extensions given in \([Le2]\) to produce generic polynomials—was directly inspired by Black’s result.

We let \(D_4 \) denote the dihedral group of order 8, i.e., the group with generators \(\sigma \) and \(\tau \) and relations \(\sigma^4 = \tau^2 = 1 \) and \(\tau \sigma = \sigma^3 \tau \). Also, we assume all fields to have characteristic \(\neq 2 \).

The quasi-dihedral group

Let \(M/K \) be a \(D_4 \)-extension. By \([K1, \text{Thm. 5}]\), we may assume

\[M = K(\sqrt{r(a + \sqrt{a})}, \sqrt{b}), \]

where \(a \) and \(b = a - 1 \) in \(K^* \) are quadratically independent, and \(r \in K^* \) is arbitrary.\footnote{In \([K3]\), Kuming lists two kinds of \(D_4 \)-extensions, the other being \(K(\sqrt[4]{a}, \sqrt{-1})/K \). However, the first kind, described above, covers everything.} Now, by \([Le2, 2.4]\), \(M/K \) can be embedded in a \(\text{QD}_8 \)-extension \(F/K \), such that \(F/K(\sqrt{b}) \) is cyclic and \(F/K(\sqrt{a\sqrt{b}}) \) is dihedral, if and only if the quadratic forms \(\langle b, 2r^2, 2\alpha \rangle \) and \(\langle a, 2, 2a \rangle \) are equivalent over \(K \). Thus, the embedding problem is solvable for some \(r \in K^* \), if and only if the quadratic form \(\langle a, 2, 2a \rangle \) represents \(b \), i.e., if and only if

\[ax^2 + 2y^2 + 2az^2 = b = a - 1. \]
for suitable \(x, y, z \in K\). Considering \(y^2 + az^2\) as a norm in the quadratic extension \(K(\sqrt{-a})/K\) and multiplying \(y + z\sqrt{-a}\) by a factor \((u + v\sqrt{-a})/(u - v\sqrt{-a})\), we see that we can replace \(y\) and \(z\) by

\[
y' = \frac{(u^2 - av^2)y - 2avuz}{u^2 + av^2}, \quad z' = \frac{(u^2 - av^2)z + 2uvy}{u^2 + av^2}
\]

for \(u, v \in K\) with \(u^2 + av^2 \neq 0\), if necessary. (The fact that \(-a\) may be a square in \(K\) does not change the validity of this substitution.) Thus, we may assume \(1 - x^2 - 2z^2 \neq 0\) and get

\[
a = \frac{1 + 2y^2}{1 - x^2 - 2z^2}.
\]

Choosing \(u\) and \(v\) properly, we may assume \(ax^2 + 2y^2 \neq 0\) as well. Now,

\[
Q' \langle a, 2, 2a \rangle Q = (b, 2a(ax^2 + 2y^2), 2ab(ax^2 + 2y^2))
\]

for

\[
Q = \begin{pmatrix} x & -2y & -2axz \\ y & ax & -2ayz \\ z & 0 & ax^2 + 2y^2 \end{pmatrix}.
\]

Also, \(\det Q = b(ax^2 + 2y^2)\).

Thus, the embedding problem is solvable for \(r = ax^2 + 2y^2\). More generally, it is solvable whenever \((b, 2ra, 2rab) \sim \langle b, 2a(ax^2 + 2y^2), 2ab(ax^2 + 2y^2) \rangle\). By the Witt Cancellation Theorem (see e.g. [Ja, 6.5 p. 367]) this is equivalent to \((2a, ra, 2rab) \sim \langle 2a(ax^2 + 2y^2), 2ab(ax^2 + 2y^2) \rangle\), i.e., to \(\langle r, rb \rangle \sim \langle ax^2 + 2y^2 \rangle(1, b)\). Hence, we must have \(r = (ax^2 + 2y^2)(p^2 + bq^2)\) for suitable \(p, q \in K\). And since we can modify \(r\) by a factor from \(K^* \cap (K(\sqrt{a}, \sqrt{b}))^2\) without changing \(M\), we can assume \(p = 1\) and \(r = (ax^2 + 2y^2)(1 + bq^2)\). Then

\[
Q'^*(a, 2, 2a)Q' = (b, 2ra, 2rab)
\]

when

\[
Q' = Q \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -bq \\ 0 & q & 1 \end{pmatrix} = \begin{pmatrix} x & -2(y + aqxz) & 2(bqy - axz) \\ y & ax(x - 2qyz) & -a(bqx + 2yz) \\ z & 0 & ax^2 + 2y^2 \end{pmatrix},
\]

and \(\det Q' = rb\).

The construction of \(QD_s\)-extensions in [Le2 2.4] uses the matrix \(P = Q'^{-1}\): If \(P'(b, 2ra, 2rab)P = \langle a, 2, 2a \rangle\) and \(\det P = 1/\sqrt{rb}\), the \(QD_s\)-extensions we seek are

\[
K(\sqrt{s\omega}, \sqrt{a})/K, \quad s \in K^*,
\]

where

\[
\omega = 1 + p_{11}\sqrt{b}/\sqrt{a} + \frac{1}{2}(p_{22} + p_{23}/\sqrt{a} - p_{32}\sqrt{b} + p_{33}\sqrt{b}/\sqrt{a})\sqrt{r(a + \sqrt{a})}
\]

\[
+ \frac{1}{2}(p_{22} - p_{23}/\sqrt{a} + p_{32}\sqrt{b} + p_{33}\sqrt{b}/\sqrt{a})\sqrt{\frac{\sqrt{a} - 1}{\sqrt{b}}\sqrt{r(a + \sqrt{a})}}.
\]

Moreover, \(K(\sqrt{s\omega}, \sqrt{a})/K\) is the Galois closure of \(K(\sqrt{s\omega})/K\).
Fortunately, it is easy to invert Q':
\[
P = Q'^{-1} = (1/b, 1/2ra, 1/2rab)Q''(a, 2a)
\]
\[
= \begin{pmatrix}
\frac{ax}{b} & 2y/b & 2az/b \\
-(y + axz)/r & (x - 2qyz)/r & (ax^2 + 2y^2)q/r \\
(bqy - axz)/rb & -(bqx + 2yz)/rb & (ax^2 + 2y^2)/rb \\
\end{pmatrix}.
\]

We now have

Theorem 1. A QD_8-extension has the form
\[K(\sqrt{s\omega}, \sqrt{a})/K, \quad s \in K^*,\]
where
\[a = \frac{1 + 2y^2}{1 - x^2 - 2z^2}\]
for suitable $x, y, z \in K$, such that a and $b = a - 1$ are well-defined and quadratically independent, $ax^2 + 2y^2 \neq 0$, and
\[
\omega = 1 + \frac{x\sqrt{a}}{\sqrt{b}}
+ \frac{1}{2r} \left[x - 2qyz + \frac{g(ax^2 + 2y^2)}{\sqrt{a}} + \frac{bqx + 2yz}{\sqrt{b}} + \frac{ax^2 + 2y^2}{\sqrt{a}\sqrt{b}} \right] \sqrt{r(a + \sqrt{a})}
+ \frac{1}{2r} \left[x - 2qyz - \frac{g(ax^2 + 2y^2)}{\sqrt{a}} - \frac{bqx + 2yz}{\sqrt{b}} + \frac{ax^2 + 2y^2}{\sqrt{a}\sqrt{b}} \right] \sqrt{a - 1}\sqrt{r(a + \sqrt{a})}
\]
for $q \in K$, such that $r = (ax^2 + 2y^2)(1 + bq^2) \neq 0$.

In particular, we get a QD_8-extension over $K(x, y, z, q, s)$, when we consider x, y, z, q and s as indeterminates. This gives us our generic polynomial for QD_8-extensions:

Theorem 2. Let x, y, z, q and s be indeterminates over the field K. Then the polynomial
\[F(x, y, z, q, s, T) = (T^2 - s)^4 + s^2c_2(T^2 - s)^2 + s^3c_3(T^2 - s) + s^4c_0\]
in $K(x, y, z, q, s, T)$ is a generic polynomial for QD_8-extensions over K, when
\[
a = \frac{1 + 2y^2}{1 - x^2 - 2z^2}, \quad b = a - 1, \quad r = (ax^2 + 2y^2)(1 + bq^2),
\]
\[
h = p_{23} + ap_{32} - p_{33}, \quad k = p_{22} - p_{32} + p_{33},
\]
\[
\alpha = r(h^2 + ak^2 + 2hk)/4, \quad \beta = r(h^2 + ak^2 + 2aah)/4a,
\]
\[
c_2 = -2(ax^2/b + 2\alpha), \quad c_1 = 2rx(p_{23} + ap_{32} - ap_{22} - bp_{33})
- 2ap_{22}p_{33} + 2ap_{23}p_{32} - 2p_{23}p_{33} + 2ap_{22}p_{33},
\]
\[
c_0 = a^2x^4/b^2 + 2(\alpha^2 + a\beta^2) - 4ax^2\alpha/b - 2(\alpha^2 - a\beta^2)
\]
and the p_{ij}'s are the entries in the matrix P above. Specifically, QD_8-extensions are obtained by specialisations such that a and b are well-defined and quadratically independent, and r and s are $\neq 0$.
Proof. $f(x, y, z, q, T) = T^4 + c_2 T^2 + c_1 T + c_0$ is the minimal polynomial for $\omega - 1$, where ω is as in Theorem \[1\]. It follows that $F(x, y, z, q, s, T)$ is the minimal polynomial for $\sqrt{s \omega}$.

Remark. A few observations about the calculation of $f(x, y, z, q, T)$ are in order. Since $\theta = \omega - 1$ has degree 4 and is a primitive element for the $C_2 \times C_2$-extension $M/K(\sqrt{a})$, we are left with calculating minimal polynomials in $C_2 \times C_2$-extensions:

Let $L/k = k(\sqrt{A}, \sqrt{B})/k$ be a $C_2 \times C_2$-extension, and let $\theta = a_1 \sqrt{A} + a_2 \sqrt{B} + a_3 \sqrt{A} \sqrt{B}, a_1, a_2, a_3 \in k$, have degree 4. Then the minimal polynomial for θ over k is

$$f(T) = T^4 - 2(a_1^2 A + a_2^2 B + a_3^2 AB)T^2 - 8a_1 a_2 a_3 ABT$$
$$+ (a_1^4 A^2 + a_2^4 B^2 + a_3^4 A^2 B^2 - 2a_1^2 a_2^2 AB - 2a_1^2 a_3^2 A^2 B - 2a_2^2 a_3^2 AB^2).$$

We notice that the coefficients in degrees 0 and 2 are expressed in terms of $a_1' = a_1^2 A$, $a_2' = a_2^2 B$ and $a_3' = a_3^2 AB$. In the case of Theorem \[2\] we have $L/k = M/K(\sqrt{a}), A = b$ and $B = r(a + \sqrt{a})$. Also,

$$a_1 = p_{11}/\sqrt{a},$$
$$a_2 = \frac{1}{4}(p_{22} + p_{32}/\sqrt{a} + p_{33}(\sqrt{a} - 1) + p_{33}(\sqrt{a} - 1)/\sqrt{a}),$$
$$a_3 = \frac{1}{4}(p_{22} + p_{33}/\sqrt{a} - 1)/b - p_{23}(\sqrt{a} - 1)/b \sqrt{a} - p_{32} + p_{33}/\sqrt{a}.$$
for suitable \(x, y, z \in K\). We may assume \(1 + x^2 - 2z^2 \neq 0\) and get
\[
a = \frac{1 - 2y^2}{1 + x^2 - 2z^2}.
\]
Modifying \(y\) and \(z\) properly, we may assume \(z\) and \(b + 2y^2\) to be non-zero as well.

Now, returning to the first criterion given,
\[
Q'(ab, 2a, 2b)Q = \langle b, a(b + 2y^2), ab(b + 2y^2) \rangle
\]
for
\[
Q = \begin{pmatrix}
y/az & -1 & -xy/z \\
b/2az & y & -bx/2z \\
x/2z & 0 & (b + 2y^2)/2z
\end{pmatrix},
\]
Also, \(\det Q = (b + 2y^2)/2\).

Thus, the embedding problem is solvable for \(r = b + 2y^2\), and more generally whenever \(\langle r, rb \rangle \sim (b + 2y^2, b(b + 2y^2))\). Hence, we must have \(r = (b + 2y^2)(p^2 + bq^2)\) for suitable \(p, q \in K\). Again, we can assume \(p = 1\) and thus \(r = (b + 2y^2)(1 + bq^2)\).

Then
\[
Q'(ab, 2a, 2b)Q' = \langle b, ra, rab \rangle
\]
when
\[
Q' = Q \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & -bq \\
0 & q & 1
\end{pmatrix} = \begin{pmatrix}
y/az & -(z + qxy)/z & (bqz - xy)/z \\
b/2az & (2yz - bqx)/2z & -(2qyz + x)b/2z \\
x/2z & (b + 2y^2)q/2z & (b + 2y^2)/2z
\end{pmatrix},
\]
and \(\det Q' = r/2\).

We need to invert \(Q'\), and again this is easy:
\[
P = Q'^{-1} = (1/b, 1/ra, 1/rab)Q'(ab, 2a, 2b)
\]
\[
= \begin{pmatrix}
y/z & 1/z \\
-b(z + qxy)/rz & (2yz - bqx)/rz & (b + 2y^2)q/raz \\
(bqz - xy)/rz & -(x + 2qyz)/rz & (b + 2y^2)/raz
\end{pmatrix}.
\]
We now have

Theorem 3. A \(D_s\)-extension has the form
\[
K(\sqrt{s\omega}, \sqrt{b})/K, \quad s \in K^*,
\]
where
\[
a = \frac{1 - 2y^2}{1 + x^2 - 2z^2}
\]
for suitable \(x, y, z \in K\), such that \(a\) and \(b = a-1\) are well-defined and quadratically independent, \(z\) and \(b + 2y^2\) are non-zero, and
\[
\omega = 1 - \frac{y}{z\sqrt{a}} - \frac{2ayz(1+bq) + ab(1-q)x + (b+2y^2)b}{2rabz} \sqrt{r(a + \sqrt{a})}
\]
\[
+ \frac{b(b+2y^2)(1+bq) + a^2(2yz - bqx)}{2rabz\sqrt{a}} \sqrt{r(a + \sqrt{a})}
\]
for \(q \in K\), such that \(r = (b + 2y^2)(1 + bq^2) \neq 0\).

Considering \(x, y, z, q\) and \(s\) as indeterminates, we get our generic polynomial for \(D_s\)-extensions:
Theorem 4. Let \(x, y, z, q \) and \(s \) be indeterminates over the field \(K \). Then the polynomial
\[
G(x, y, z, q, s, T) = (T^2 - s)^4 + s^2d_2(T^2 - s)^2 + s^3d_1(T^2 - s) + s^4d_0
\]
in \(K(x, y, z, q, s, T) \) is a generic polynomial for \(D_8 \)-extensions, when
\[
a = \frac{1 - 2y^2}{1 + x^2 - 2x^2}, \quad b = a - 1, \quad r = (b + 2y^2)(1 + bq), \quad \alpha = -y/az, \quad \beta = -(2ayz(1 + bq) + ab(1 - q)x + (b + 2y^2)b)/2rabz, \quad \gamma = (b(b + 2y^2)(1 + bq) + a^2(2yz - bx))/2rab^2az \]
\[
d_2 = -2a(a^2 + r\beta^2 + r\alpha\gamma + 2r\beta\gamma), \quad d_1 = -4raba\beta^2 + 2a\beta \gamma) \quad \text{and} \quad d_0 = a(aa^4 + r\beta^2\alpha^2 + r^2a^2\gamma^4 - 2r\alpha\beta^2\beta^2 - 2r^2a^2\alpha^2\gamma^2 - 2r^2a\beta^2\gamma^2 + 2r^2a^2\beta^2\gamma^2 - 4r\alpha^2\beta\gamma).
\]
Specifically, \(D_8 \)-extensions are obtained by specialisations such that \(a \) and \(b \) are well-defined and quadratically independent, and \(r \) and \(s \) are \(\neq 0 \).

Proof. \(g(x, y, z, q, T) = T^4 + d_2T^2 + d_1T + d_0 \) is the minimal polynomial for \(\omega - 1 \), where \(\omega \) is as in Theorem 3

Remark. If \(L/k = k(\sqrt{r(a + \sqrt{a})})/k, a = 1 + c^2 \), is a \(C_4 \)-extension, the minimal polynomial for an element
\[
\theta = \alpha\sqrt{a} + \beta\sqrt{r(a + \sqrt{a})} + \gamma\sqrt{a}\sqrt{r(a + \sqrt{a})} \in M
\]
of degree 4 is
\[
f(T) = T^4 - 2a(a^2 + r\beta^2 + r\alpha\gamma + 2r\beta\gamma)T^2 - 4raba\beta^2 + 2a\beta \gamma)T + a(aa^4 + r\beta^2\alpha^2 + r^2a^2\gamma^4 + 2r^2a^2\beta^2\gamma^2 - 2r^2a\beta^2\gamma^2 + 2r^2a^2\beta^2\gamma^2 - 4r\alpha^2\beta\gamma).
\]
In the case of Theorem 4 our \(C_4 \)-extension is \(L/k = M/K(\sqrt{b}) \), and we let \(\theta = \omega - 1 \) and \(c = \sqrt{b} \). This gives us the minimal polynomial for \(\omega - 1 \) over \(K(\sqrt{b}) \), and since \(c = \sqrt{b} \) only occurs to the second power, the polynomial is in fact the minimal polynomial over \(K \). Computing the minimal polynomial for \(s\omega \) over \(K \) is then trivial.

The Modular Group

Let \(M/K \) be a \(C_4 \times C_2 \)-extension. It is well-known that \(C_4 \)-extensions have the form \(K(\sqrt{r(a + \sqrt{a})})/K \), where \(a = 1 + c^2, a \in K^*, \) is not a square, and \(r \in K^* \) is arbitrary. Thus, we can write \(M = K(\sqrt{r(a + \sqrt{a})}, \sqrt{b}) \), where \(a = 1 + c^2 \) and \(b \in K^* \) in \(K^* \) are quadratically independent, and \(r \in K^* \).

By [Lec2, 3.5], \(M/K \) can be embedded in an \(M_{16} \)-extension \(F/K \), such that \(F/K(\sqrt{a}) \) is not cyclic, if and only if the quadratic forms \((1, 2rab, 2rab) \) and \((a, 2b, 2ab) \) are equivalent over \(K \). So, in order for the embedding problem to
be solvable for some $r \in K^*$, it is necessary and sufficient that the quadratic form $\langle a, 2b, 2ab \rangle$ represents 1, i.e.,

$$ax^2 + 2by^2 + 2abz^2 = 1$$

for suitable $x, y, z \in K$. We must have $y^2 + az^2 \neq 0$, since otherwise $ax^2 = 1$, and so

$$b = \frac{1 - ax^2}{2(y^2 + az^2)}.$$ Modifying y and z if necessary, we may assume z and $ax^2 + 2b(y/z)^2$ to be non-zero, and replacing b by bz^2, y by y/z and z by 1, we get

$$b = \frac{1 - ax^2}{2(y^2 + a)}$$
and $ax^2 + 2by^2 \neq 0$. Now,

$$Q^t \langle a, 2b, 2ab \rangle Q = \langle 1, 2ab(ax^2 + 2by^2), 2ab(ax^2 + 2by^2) \rangle$$

for

$$Q = \begin{pmatrix} x & -2by & -2abx \\ y & ax & -2aby \\ 1 & 0 & ax^2 + 2by^2 \end{pmatrix}$$
and $\det Q = ax^2 + 2by^2$.

Thus, the embedding problem is solvable for $r = ax^2 + 2by^2$, and more generally for $r = (ax^2 + 2by^2)(p^2 + q^2)$ for $p, q \in K$ with $p^2 + q^2 \neq 0$. We can assume $p = 1$ and $r = (ax^2 + 2by^2)(1 + q^2)$. Then

$$Q^t \langle a, 2b, 2ab \rangle Q' = \langle 1, 2rab, 2rab \rangle$$
when

$$Q' = Q \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -q \\ 0 & q & 1 \end{pmatrix} = \begin{pmatrix} x & -2b(y + ax) & 2b(qy - ax) \\ y & a(x - 2by) & -a(qx + 2by) \\ 1 & (ax^2 + 2by^2)q & ax^2 + 2by^2 \end{pmatrix},$$

and $\det Q' = r$.

Using [Le2, 3.5], we get the M_{16}-extensions

$$K(\sqrt{s\omega}, \sqrt{a})/K, \quad s \in K^*,$$

where

$$\omega = 1 + p_{11}/\sqrt{a} + \frac{1}{2}[p_{22} + p_{23}/\sqrt{a} - p_{32} + p_{33}/\sqrt{a}]\sqrt{r(a + \sqrt{a})}$$
$$+ \frac{1}{2}[p_{22} - p_{23}/\sqrt{a} + p_{32} + p_{33}/\sqrt{a}]\sqrt{\frac{a - 1}{c}}\sqrt{r(a + \sqrt{a})},$$

where

$$P = Q'^{-1} = \langle 1, 1/2rab, 1/2rab \rangle Q^t \langle a, 2b, 2ab \rangle$$

$$= \begin{pmatrix} ax & 2by & 2ab \\ -(y + ax)/r & (x - 2by)/r & (ax^2 + 2by^2)/r \\ (qy - ax)/r & -(qx + 2by)/r & (ax^2 + 2by^2)/r \end{pmatrix}.$$
Theorem 5. An M_{16}-extension has the form
\[K(\sqrt{s\omega}, \sqrt{b})/K, \quad s \in K^*, \]
where
\[b = \frac{1 - ax^2}{2(y^2 + a)} \]
for suitable $c, x, y \in K$, such that $a = 1 + c^2$ and b are well-defined and quadratically independent, $ax^2 + 2by^2 \neq 0$, and
\[\omega = 1 + x\sqrt{a} \]
\[+ \frac{1}{2r} \left[x(1 + q) + 2by(1 - q) + \frac{(ax^2 + 2by^2)(1 + q)}{\sqrt{a}} \right] \sqrt{r(a + \sqrt{a})} \]
\[+ \frac{1}{2r} \left[x(1 - q) - 2by(1 + q) + \frac{(ax^2 + 2by^2)(1 - q)}{\sqrt{a}} \right] \sqrt{a - 1} \sqrt{r(a + \sqrt{a})} \]
for $q \in K$, such that $r = (ax^2 + 2by^2)(1 + q^2) \neq 0$.

Treating c, x, y, q and s as indeterminates, we then have

Theorem 6. Let c, x, y, q and s be indeterminates over the field K. Then the polynomial
\[H(c, x, y, q, s, T) = (T^2 - s)^4 + e_2(T^2 - s)^2 + e_1(T^2 - s) + e_0 \]
in $K(c, x, y, q, s, T)$ is a generic polynomial for M_{16}-extensions, when
\[a = 1 + c^2, \quad b = \frac{1 - ax^2}{2(y^2 + a)}, \quad r = (ax^2 + 2by^2)(1 + q^2), \]
\[\beta = ((cx + 2by)(1 + q) + (ax^2 + 2by^2 + 2bcy - x)(1 - q))/2rc, \]
\[\gamma = ((acx^2 + 2bcy^2 - 2aby)(1 + q) + (ax(1 - x) - 2by^2)(1 - q))/2rac, \]
\[e_2 = -2a(x^2 + r\beta^2 + r\alpha\gamma^2 + 2r\beta\gamma), \]
\[e_1 = -4rax(\beta^2 + \alpha\gamma^2 + 2\alpha\beta\gamma) \quad \text{and} \]
\[e_0 = a(ax^4 + r^2b\beta^4 + r^2a^2\gamma^4 - 2r^2x^2\beta^2 - 2r^2a^2\gamma^2 - 2r^2ab\beta^2\gamma^2 + 2r^2a^2\beta^3\gamma - 4rx^2\beta\gamma). \]

Specifically, M_{16}-extensions are obtained by specialisations such that a and b are well-defined and quadratically independent, and r and s are $\neq 0$.

Proof. $h(c, x, y, q, T) = T^4 + e_2T^2 + e_1T + e_0$ is the minimal polynomial for $\omega - 1$, where ω is as in Theorem 5.

Remark. In [Le2], a description of C_8-extensions is produced from the description of QD_8-extensions by, essentially, letting b be a square. However, Saltman proves in [Sa, Thm. 5.11] that there is no generic C_8-extension over the rational numbers, and—by implication—no generic polynomial for C_8-extensions in that case either. The reason the construction of generic polynomials works for QD_8, D_8 and M_{16}, but not for C_8, is the extra degree of freedom obtained by introducing b: If we try to carry through the calculations for C_8, we get a condition of the type $a - 1 = (1 + 2y^2)/(1 - x^2 - 2z^2) - 1 = b^2$, and it is not clear how to ensure that $a - 1$ is a
square, while at the same time getting enough a's. (Indeed, by Saltman’s result it is impossible.) Thus, paradoxically, the larger groups QD_8, D_8 and M_{16} are easier to handle than the smaller group C_8.

References

Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario, Canada K7L 3N6

E-mail address: ledet@mast.queensu.ca