BOUNDED VARIATION IN THE MEAN

PAMELA B. PIERCE AND DANIEL WATERMAN

(Communicated by Christopher D. Sogge)

Abstract. It is shown that the concept of bounded variation in the mean is not a meaningful generalization of ordinary bounded variation. In fact, it is a characterization of functions which differ from functions of bounded variation on a zero set.

Let f be a real-valued function in L^1 on the circle group T. We define the corresponding interval function by $f(I) = f(b) - f(a)$, where I denotes the interval $[a, b]$. Let $0 = t_0 < t_1 < \cdots < t_n = 2\pi$ be a partition of $[0, 2\pi]$, and $I_{kx} = [x + t_{k-1}, x + t_k]$. If

$$V_m(f) = \sup \left\{ \int_T \sum_{k=1}^n |f(I_{kx})| \, dx \right\} < \infty,$$

where the supremum is taken over all partitions, then f is said to be of bounded variation in the mean (or of bounded variation in the L^1 norm). We denote the class of all functions which are of bounded variation in the mean by BVM. This concept was introduced by Moricz and Siddiqi [MS], who investigated the convergence in the mean of the partial sums of $S[f]$, the Fourier series of f.

If f is of bounded variation ($f \in BV$) with variation $V(f, T)$, then

$$\int_T \sum_{k=1}^n |f(I_{kx})| \, dx \leq 2\pi V(f, T),$$

and so it is clear that $BV \subseteq BVM$. Clearly this integral is invariant under an alteration of f on a zero set, and so a function which differs from a BV function on a zero set is in BVM.

A straightforward calculation shows that BVM is a Banach space with norm

$$\|f\|_{BVM} = \|f\|_1 + V_m(f).$$

We shall show that bounded variation in the mean implies convergence of $S[f, x]$ to $f(x)$ for every x which is a symmetric Lebesgue point, i.e., for every f which satisfies the symmetric Lebesgue condition,

$$\frac{1}{h} \int_0^h [f(x + t) + f(x - t) - 2f(x)] \, dt = o(1) \quad \text{as } h \to 0$$

at x and, for an f which satisfies this condition uniformly on a set E and is bounded on E, the convergence is uniform.
We use a convergence test of Waterman [W]. For odd integers n, let

$$T_n(x,t) = \frac{f(x+t/n) - f(x + (t+\pi)/n)}{1} + \frac{f(x + (t+2\pi)/n) - f(x + (t+3\pi)/n)}{3} + \cdots + \frac{f(x + (t+ (n-1)\pi)/n) - f(x + (t+n\pi)/n)}{n}$$

and let $Q_n(x,t)$ be obtained from $T_n(x,t)$ by substituting $-t$ and $-\pi$ for t and π, respectively.

Convergence Test (Waterman). If $f \in L^1(T)$ satisfies the symmetric Lebesgue condition (\ast) and also satisfies

$$(\ast\ast) \quad \int_0^{2\pi} |T_n(x,t) + Q_n(x,t)| dt = o(1) \quad \text{as } n \to \infty,$$

then $S[f,x]$ converges to $f(x)$. If (\ast) and $(\ast\ast)$ hold uniformly on a set E and f is bounded on E, then $S[f,x]$ converges uniformly to $f(x)$ on E.

If $f \in BVM$, then for a positive integer k, and Σ^o indicating summation over odd integers,

$$\int_0^{2\pi} |T_n(x,t)| dt = \int_0^{2\pi} \left| \sum_{i=1}^{n} \frac{f(x + (t + (i-1)\pi)/n) - f(x + (i\pi)/n)}{i} \right| dt \leq \int \left| \sum_{i=1}^{k} \cdots \right| dt + \int \left| \sum_{i=k+1}^{n} \cdots \right| dt \leq k \omega_1(f, \frac{\pi}{n}) + \frac{1}{k + 1} V_m(f).$$

The first term is $o(1)$ as $n \to \infty$ for fixed k and the second can be made as small as we wish by choosing k large. The corresponding integral with Q_n is estimated in the same manner. The test then yields convergence of $S[f,x]$. Note that $(\ast\ast)$ holds uniformly on T. If f is bounded on E and the Lebesgue condition holds uniformly on E, the test yields uniform convergence on E. Note that if f is uniformly continuous on E, then the Lebesgue condition holds uniformly.

The similarities of the implications for the convergence of $S[f]$ of the property BVM and the property BV lead us to ask, “What functions are in $BVM \setminus BV$?”

It is easy to see that even exceptionally regular f which are not of bounded variation may not be in BVM. Let $V(f,I)$ denote the variation of f on the interval I. Suppose f is a continuous function which is in $C^1(a,2\pi]$ for every $a \in (0,2\pi)$ but $V(f,[a,2\pi]) / \infty$ as $a \not \to 0$. Given a partition of $[0,2\pi]$, let

$$K_x = \{ k : kx (\text{mod } 2\pi) \subseteq [a,2\pi]\}.$$

Then

$$\sum_{k=1}^{n} |f(I_{kx})| \geq \sum_{k \in K_x} |f(I_{kx})| = \sum_{k \in K_x} |f'(kx)| (t_k - t_{k-1}).$$
for some $\theta_{kx} \in I_{kx}$. For any given $\varepsilon > 0$, there is a $\delta_\varepsilon > 0$ such that $sup(t_k - t_{k-1}) < \delta_\varepsilon$ implies

$$\sum_{k \in K_x} |f'(\theta_{kx})(t_k - t_{k-1})| \geq \int_a^{2\pi} |f'(t)| dt - \varepsilon = V(f, [a, 2\pi]) - \varepsilon.$$

Thus, for sufficiently fine partitions, we have

$$\frac{1}{2\pi} \int_T \sum_{k=1}^n |f(I_{kx})| dx \geq V(f, [a, 2\pi]) - \varepsilon,$$

implying that $f \notin \text{BVM}$.

This observation leads us naturally to conjecture that BVM does not constitute a true extension of BV. The following result shows that this is indeed the case.

Theorem. A function $f \in \text{BVM}$ if and only if there is a function $g \in \text{BV}$ such that $f = g$ a.e.

Proof. Consider the integral means of a function $f \in L^1$,

$$f_h(x) = \frac{1}{h} \int_0^h f(x + t) dt , \ h > 0.$$

Note that these means are absolutely continuous and $f_h(x) \to f(x)$ a.e. as $h \searrow 0$. We have also

$$f'_h = \frac{1}{h} (f(x + h) - f(x)) \quad \text{a.e.}$$

and, therefore,

$$V(f_h, T) = \frac{1}{h} \int_T |f(x + h) - f(x)| dx.$$

If $f \in \text{BVM}$, then there is a $C < \infty$ such that

$$\sum_{i=0}^{n-1} \int_T \left| f(x + \frac{2\pi i}{n}) - f(x + \frac{2\pi(i+1)}{n}) \right| dx < C.$$

We note that

$$\int_T \left| f\left(x + \frac{2\pi i}{n}\right) - f\left(x + \frac{2\pi(i+1)}{n}\right) \right| dx = \int_T \left| f(x) - f\left(x + \frac{2\pi}{n}\right) \right| dx = \frac{2\pi}{n} V(f_{2\pi/n}, T).$$

Thus (***) implies that

$$2\pi V(f_{2\pi/n}, T) < C < \infty,$$

or $\{f_{2\pi/n}\}$ is of uniformly bounded variation. Choose x_0 such that $f(x_0)$ is finite and $f_h(x_0) \to f(x_0)$ as $h \to 0$. Then for a given $\varepsilon > 0$ there is a $\delta > 0$ such that

$$|f_h(x_0) - f(x_0)| < \varepsilon \quad \text{if} \quad 0 < h < \delta$$

and so

$$|f_h(x_0)| < |f(x_0)| + \varepsilon.$$
for such h. Thus the sequence $\{f_{2\pi/n}(x_0)\}$ is bounded. By Helly’s theorem we may deduce the existence of an increasing sequence of the positive integers $\{n_k\}$ and a function $g \in BV$ such that

$$f_{2\pi/n_k}(x) \to g(x)$$

for every x as $k \to \infty$. However

$$f_{2\pi/n_k}(x) \to f(x) \quad \text{a.e.}$$

and so

$$f(x) = g(x) \in BV \quad \text{a.e.}$$

\[\square \]

References
