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HOLOMORPHIC SECTIONS
OF PRE-QUANTUM LINE BUNDLES ON G/(P, P )

MENG-KIAT CHUAH

(Communicated by Roe Goodman)

Abstract. Let G = KAN be the Iwasawa decomposition of a complex con-
nected semi-simple Lie group G. Let P ⊂ G be a parabolic subgroup containing
AN , and let (P,P ) be its commutator subgroup. In this paper, we character-

ize the K-invariant Kähler structures on G/(P, P ), and study the holomorphic
sections of their corresponding pre-quantum line bundles.

1. Introduction

Let K be a compact connected semi-simple Lie group, let G be its complexifi-
cation, and let G = KAN be an Iwasawa decomposition. Let T be the centralizer
of A in K, so that H = TA is a Cartan subgroup, and B = HN is a Borel sub-
group of G. Let P be a parabolic subgroup of G containing B, and (P, P ) its
commutator subgroup. Each P determines a subgroup AP ⊂ A via Langlands de-
composition P = MPAPNP ([7], p. 132). It also determines a subtorus TP ⊂ T ,
which makes HP = TPAP complex. Since HP normalizes (P, P ), it has right action
on G/(P, P ). In [3], we consider K×TP -invariant Kähler structures ω on G/(P, P ),
and study the pre-quantum line bundle [8] corresponding to ω. We then observe
that the holomorphic sections of the pre-quantum line bundle constitute a nice
multiplicity-free K-representation. In this paper, we show that if the K-invariant
ω is not preserved by the right TP -action, then the pre-quantum line bundle has no
holomorphic section other than the zero section.

The Lie algebra of a Lie group shall always be denoted by its lowercase German
letter. For instance, h and tP are the Lie algebras of H and TP respectively.

Consider the root system in h∗. By declaring n to be the negative root spaces,
we obtain a system of positive roots in h∗. Let ∆ be the simple roots. There is a
natural bijective correspondence between the parabolic subgroups P containing B
and the subsets of ∆. Namely, P corresponds to ∆P ⊂ ∆ by

∆P = {λ ∈ ∆ ; (λ, v) 6= 0 for some v ∈ tP }.(1.1)

Note that as P grows bigger, ∆P gets smaller. For example, ∆B = ∆.
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Fix one parabolic subgroup P containing B, with corresponding simple roots
∆P = {λ1, ..., λr} via (1.1). Each λi is integral, in the sense that there is a multi-
plicative homomorphism χi : H −→ C× such that

χi(ev) = exp(λi, v)(1.2)

for all v ∈ h. Let Rt denote the right action of t ∈ TP .

Theorem 1. Every K-invariant Kähler form on G/(P, P ) can be uniquely ex-
pressed as

ω =
√
−1∂∂̄F +

r∑
1

dβi,

where R∗tβi = χi(t)βi for all t ∈ TP . So ω has a potential function if and only if it
is right TP -invariant, if and only if

∑r
1 dβi vanishes.

Let ω be a K-invariant Kähler form on G/(P, P ). By Theorem 1, ω is exact.
Therefore it is integral, and corresponds to a pre-quantum line bundle L in the sense
of Kostant [8]. Namely the Chern class of L is [ω] = 0, and L has a connection
∇ whose curvature is ω. A smooth section s of L is said to be holomorphic if
∇vs = 0 whenever v is an anti-holomorphic vector field [5]. Let H(L) denote the
holomorphic sections of L. The K-action on G/(P, P ) lifts to a K-representation
on H(L). In [3], we show that if ω is right TP -invariant, then every irreducible K-
representation with highest weight in t∗P occurs exactly once in H(L). The following
theorem observes the opposite situation, when ω is not right TP -invariant.

Theorem 2. Suppose that ω does not satisfy the equivalent conditions given in
Theorem 1. Then H(L) = 0.

We remark that partial results of Theorems 1 and 2 appear in [1] and [4], for the
special case where P is the Borel subgroup HN . The present paper extends those
results to general parabolic subgroups P .

2. Proofs of theorems

In this section, we prove the two theorems mentioned in the introduction. We
start with the following topological property of G/(P, P ).

Proposition 3. H2(G/(P, P ),R) = 0.

Proof. Let KP be the centralizer of TP in K, and KP
ss = (KP ,KP ) be its commu-

tator subgroup. As a manifold, G/(P, P ) = (K/KP
ss) × AP [3]. Since AP has the

topology of an Euclidean space, it suffices to show that H2(K/KP
ss,R) = 0. But K

is compact. So we only need to consider the DeRham subcomplex of K-invariant
differential forms on K/KP

ss, and show that the H2 of this subcomplex vanishes.
This is done via relative Lie algebra cohomology as follows.

We restrict the coadjoint representation of K to KP
ss, and get

Ad∗ : KP
ss −→ Aut(k∗).

We extend this representation to exterior algebras, then differentiate to get the Lie
algebra representation

ad∗ : k
P
ss −→ End(∧qk∗).

The relative Lie algebra cohomology is defined by the complex

∧q (k, kPss)
∗ = {ω ∈ ∧qk∗ ; ι(v)ω = ad∗vω = 0 for all v ∈ k

P
ss}.(2.1)
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Here ι(v)ω denotes the interior product. We write Hq(k, kPss) for the cohomology
resulting from (2.1). The elements in (2.1) can be naturally identified with K-
invariant differential forms on K/KP

ss. Hence to prove the proposition, it suffices
to show that

H2(k, kPss) = 0.(2.2)

Let ω ∈ ∧2(k, kPss)
∗, and suppose that dω = 0. Since k is semi-simple, H2(k) = 0

by the Whitehead lemma [6]. So since ω ∈ ∧2k∗, there exists β ∈ ∧1k∗ such that
dβ = ω. To prove (2.2), we need to show that β ∈ ∧1(k, kPss)

∗; namely

〈β, v〉 = ad∗vβ = 0(2.3)

for all v ∈ kPss.
Pick v ∈ kPss. Up to linear combination, there exist x, y ∈ kPss such that v = [x, y]

because kPss is semi-simple. Then

〈β, v〉 = 〈β, [x, y]〉
= dβ(x, y)
= ω(x, y)
= (ι(x)ω)(y).

(2.4)

Since ω ∈ ∧2(k, kPss)
∗ and x ∈ kPss, we get ι(x)ω = 0. Therefore, the last expression

in (2.4) vanishes. This proves half of (2.3), and we next prove the other half of it.
Pick x ∈ kPss and y ∈ k. By following the arguments of (2.4), we get

〈ad∗xβ, y〉 = 〈β, [x, y]〉 = (ι(x)ω)(y) = 0.

Hence ad∗xβ = 0. This completes the proof of (2.3), which implies (2.2). Proposition
3 follows.

Let W be the Weyl group, acting on the roots in h∗. Given τ ∈ W , we let l(τ)
denote its length. Let ρ denote half the sum of all positive roots.

Proof of Theorem 1. Let ω be a K-invariant Kähler form on G/(P, P ). By Propo-
sition 3, ω = dβ for some real 1-form β. We write

β = α+ ᾱ,(2.5)

where α is a (0, 1)-form. Since ω is a (1, 1)-form, it follows from dβ = ω that ∂̄α =
∂ᾱ = 0. In other words, we get a Dolbeault cohomology class [α] ∈ H0,1(G/(P, P )).
We suppress G/(P, P ) and write H0,1 for simplicity.

Consider H0,1 as a K×TP -representation space. Let H0,1
K ⊂ H0,1 denote the K-

invariant cohomology classes. Since ω is K-invariant, averaging by K if necessary,
we may assume that β and α of (2.5) are also K-invariant. In other words, [α] ∈
H0,1
K . For an integral weight λ ∈ t∗P , let H0,1

λ ⊂ H0,1 be the cohomology classes
which transform by λ under the right TP -action. By Theorem 2 of [2], H0,1

K splits
into 1-dimensional subrepresentations H0,1

λ for all λ ∈ t∗P in which we can find
τ ∈ W satisfying

τ(λ + ρ)− ρ = 0 , l(τ) = 1.(2.6)

But condition (2.6) simply means that −λ is a simple root which lies in t∗P . Equiv-
alently −λ ∈ ∆P , where ∆P = {λ1, ..., λr} consists of the simple roots in (1.1).
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Therefore, there exist ∂̄-closed (0,1)-forms α1, ..., αr such that

[α] = [
r∑
1

αi] ∈ H0,1
K(2.7)

and

[αi] ∈ H0,1
−λi ⊂ H

0,1
K .(2.8)

Here (2.7) says that

α = ∂̄f +
r∑
1

αi(2.9)

for some smooth function f . For the negative root −λi, the character corresponding
to it via (1.2) is χ−1

i . Therefore, (2.8) says that for all right action of Rt of t ∈ TP ,

R∗tαi = χ−1
i (t−1)αi = χi(t)αi.(2.10)

Let βi = αi + ᾱi for all i = 1, ..., r. Then by (2.5) and (2.9),

β = α+ ᾱ

= ∂̄f + ∂f̄ +
r∑
1

(αi + ᾱi)

= ∂̄f + ∂f̄ +
r∑
1

βi.

Therefore, by setting F =
√
−1(f̄ − f),

ω = dβ = ∂∂̄f + ∂̄∂f̄ +
r∑
1

dβi

=
√
−1∂∂̄F +

r∑
1

dβi.

Since ω, β and α are K-invariant, we can take βi, αi and f to be K-invariant too.
Since f is a K-invariant function on G/(P, P ) = (K/KP

ss)×AP , it is automatically
K × TP -invariant. Therefore, F and

√
−1∂∂̄F are also K × TP -invariant.

Each βi behaves by χi in (2.10) under the right TP -action. If
∑r

1 dβi does
not vanish and has a potential function, then it is right TP -invariant, which is
impossible. Therefore, ω has a potential function if and only if

∑r
1 dβi vanishes.

This can also be seen from the nontrivial Dolbeault cohomology classes [αi] 6= 0.
Equivalently, the vanishing of

∑r
1 dβi leaves ω =

√
−1∂∂̄F to be right TP -invariant.

This proves Theorem 1.

Let ω be a K-invariant Kähler form on G/(P, P ). By Theorem 1 ω is exact, so
it is in particular integral. Let L be the pre-quantum line bundle [8] corresponding
to ω. We now prove Theorem 2, concerning the holomorphic sections on L.

Proof of Theorem 2. Since B ⊂ P and N = (B,B) ⊂ (P, P ), we have the natural
fibration

π : G/N −→ G/(P, P ).
Suppose that ω is not invariant under the right TP -action. Since π intertwines
with the K × TP -action, π∗ω is K-invariant but not right TP -invariant. Although
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π∗ω is not Kähler, it is a closed (1,1)-form on G/N . Therefore, π∗ω accepts most
arguments in [4], including Theorem 1 there. Namely, the only holomorphic section
on the pre-quantum line bundle of π∗ω is the zero section.

Let L be the pre-quantum line bundle corresponding to ω. Then π∗L is the
pre-quantum line bundle corresponding to π∗ω. If s is a holomorphic section on
L and s 6= 0, then π∗s is a holomorphic section on π∗L and π∗s 6= 0. This is
a contradiction, so the only holomorphic section on L is the zero section. Hence
Theorem 2 is proved.
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