Splitting the curvature of the determinant line bundle
HTML articles powered by AMS MathViewer
- by Simon Scott
- Proc. Amer. Math. Soc. 128 (2000), 2763-2775
- DOI: https://doi.org/10.1090/S0002-9939-99-05311-3
- Published electronically: December 7, 1999
- PDF | Request permission
Abstract:
It is shown that the determinant line bundle associated to a family of Dirac operators over a closed partitioned manifold $M=X^{0}\cup X^{1}$ has a canonical Hermitian metric with compatible connection whose curvature satisfies an additivity formula with contributions from the families of Dirac operators over the two halves.References
- Jean-Michel Bismut, The Atiyah-Singer index theorem for families of Dirac operators: two heat equation proofs, Invent. Math. 83 (1986), no. 1, 91–151. MR 813584, DOI 10.1007/BF01388755
- Jean-Michel Bismut and Daniel S. Freed, The analysis of elliptic families. I. Metrics and connections on determinant bundles, Comm. Math. Phys. 106 (1986), no. 1, 159–176. MR 853982
- Bernhelm Booß-Bavnbek and Krzysztof P. Wojciechowski, Elliptic boundary problems for Dirac operators, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1233386, DOI 10.1007/978-1-4612-0337-7
- Booß–Bavnbek, B., Scott, S. G., and Wojciechowski, K. P.: 1998, ‘The $\zeta$-determinant and $\mathcal {C}$-determinant on the Grassmannian in dimension one’, Letters in Math. Phys., to appear.
- Grubb, G.: 1999, ‘Trace expansions for pseudodifferential boundary problems for Dirac-type operators and more general systems’, Ark. Mat. 37, 45–86.
- Richard B. Melrose and Paolo Piazza, Families of Dirac operators, boundaries and the $b$-calculus, J. Differential Geom. 46 (1997), no. 1, 99–180. MR 1472895
- Paolo Piazza, Determinant bundles, manifolds with boundary and surgery, Comm. Math. Phys. 178 (1996), no. 3, 597–626. MR 1395207
- Andrew Pressley and Graeme Segal, Loop groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1986. Oxford Science Publications. MR 900587
- D. Kvillen, Determinants of Cauchy-Riemann operators on Riemann surfaces, Funktsional. Anal. i Prilozhen. 19 (1985), no. 1, 37–41, 96 (Russian). MR 783704
- Segal, G.B.: 1990, ‘The definition of conformal field theory’, preprint.
- S. G. Scott, Determinants of Dirac boundary value problems over odd-dimensional manifolds, Comm. Math. Phys. 173 (1995), no. 1, 43–76. MR 1355618
- Scott, S.G.: 1997, in preparation.
- Scott, S.G.: 1999, ‘Determinants of higher-order elliptic boundary value problems and the Quillen metric’, preprint.
- Scott, S.G., and Torres, F.: 1998, ‘Elliptic families in dimension one: geometry of the determinant line bundle’, preprint.
- Scott, S.G., and Wojciechowski, K.P.: 1998, ‘The $\zeta$–Determinant and Quillen’s determinant on the Grassmannian of elliptic self-adjoint boundary conditions’, C. R. Acad. Sci. Paris, t. 328, Serie I, 139–144.
- Wojciechowski, K.P.: 1997, ‘The $\zeta$-determinant and the additivity of the $\eta$-invariant on the smooth, self-adjoint Grassmannian’, Comm. Math. Phys. 201, 423–444.
Bibliographic Information
- Simon Scott
- Affiliation: Department of Mathematics, King’s College, Strand, London WC2R 2LS, United Kingdom
- Email: sscott@mth.kcl.ac.uk
- Received by editor(s): September 30, 1998
- Published electronically: December 7, 1999
- Communicated by: Peter Li
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 2763-2775
- MSC (1991): Primary 58G20, 58G26; Secondary 81T50
- DOI: https://doi.org/10.1090/S0002-9939-99-05311-3
- MathSciNet review: 1662210
Dedicated: Dedicado a la memoria de Hugo Rojas 1973-1997