Uniformly bounded maximal $\varphi$-disks, Bers space and harmonic maps
HTML articles powered by AMS MathViewer
- by I. Anić, V. Marković and M. Mateljević
- Proc. Amer. Math. Soc. 128 (2000), 2947-2956
- DOI: https://doi.org/10.1090/S0002-9939-00-05325-9
- Published electronically: April 7, 2000
- PDF | Request permission
Abstract:
We characterize Bers space by means of maximal $\varphi$-disks. As an application we show that the Hopf differential of a quasiregular harmonic map with respect to strongly negatively curved metric belongs to Bers space. Also we give further sufficient or necessary conditions for a holomorphic function to belong to Bers space.References
- Lars V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0357743
- Lars V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand Mathematical Studies, No. 10, D. Van Nostrand Co., Inc., Toronto, Ont.-New York-London, 1966. Manuscript prepared with the assistance of Clifford J. Earle, Jr. MR 0200442
- Clifford J. Earle and James Eells, A fibre bundle description of Teichmüller theory, J. Differential Geometry 3 (1969), 19–43. MR 276999
- Frederick P. Gardiner, Teichmüller theory and quadratic differentials, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1987. A Wiley-Interscience Publication. MR 903027
- Zheng-Chao Han, Remarks on the geometric behavior of harmonic maps between surfaces, Elliptic and parabolic methods in geometry (Minneapolis, MN, 1994) A K Peters, Wellesley, MA, 1996, pp. 57–66. MR 1417948
- Zheng-Chao Han, Luen-Fai Tam, Andrejs Treibergs, and Tom Wan, Harmonic maps from the complex plane into surfaces with nonpositive curvature, Comm. Anal. Geom. 3 (1995), no. 1-2, 85–114. MR 1362649, DOI 10.4310/CAG.1995.v3.n1.a3
- Jürgen Jost, Two-dimensional geometric variational problems, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1991. A Wiley-Interscience Publication. MR 1100926
- O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas. MR 0344463
- Marković, M. and Mateljević, M., New versions of Reich-Strebel inequality and uniqueness of harmonic mappings, to appear.
- Yair N. Minsky, Harmonic maps, length, and energy in Teichmüller space, J. Differential Geom. 35 (1992), no. 1, 151–217. MR 1152229
- Ch. Pommerenke, On Bloch functions, J. London Math. Soc. (2) 2 (1970), 689–695. MR 284574, DOI 10.1112/jlms/2.Part_{4}.689
- Edgar Reich and Kurt Strebel, On the Gerstenhaber-Rauch principle, Israel J. Math. 57 (1987), no. 1, 89–100. MR 882248, DOI 10.1007/BF02769462
- R. Schoen and S. T. Yau, Lectures on harmonic maps, Conference Proceedings and Lecture Notes in Geometry and Topology, II, International Press, Cambridge, MA, 1997. MR 1474501
- Richard Schoen and Shing Tung Yau, On univalent harmonic maps between surfaces, Invent. Math. 44 (1978), no. 3, 265–278. MR 478219, DOI 10.1007/BF01403164
- David A. Stegenga and Kenneth Stephenson, A geometric characterization of analytic functions with bounded mean oscillation, J. London Math. Soc. (2) 24 (1981), no. 2, 243–254. MR 631937, DOI 10.1112/jlms/s2-24.2.243
- Kurt Strebel, Quadratic differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 5, Springer-Verlag, Berlin, 1984. MR 743423, DOI 10.1007/978-3-662-02414-0
- Luen-Fai Tam and Tom Y. H. Wan, Quasi-conformal harmonic diffeomorphism and the universal Teichmüller space, J. Differential Geom. 42 (1995), no. 2, 368–410. MR 1366549
- Luen-Fai Tam and Tom Y.-H. Wan, Harmonic diffeomorphisms into Cartan-Hadamard surfaces with prescribed Hopf differentials, Comm. Anal. Geom. 2 (1994), no. 4, 593–625. MR 1336897, DOI 10.4310/CAG.1994.v2.n4.a5
- Li, P., Tam, L. and Wang, J., Harmonic diffeomorphisms between hyperbolic Hadamard manifolds, Jour. Geom. Anal., to appear.
- Tom Yau-Heng Wan, Constant mean curvature surface, harmonic maps, and universal Teichmüller space, J. Differential Geom. 35 (1992), no. 3, 643–657. MR 1163452
- Michael Wolf, The Teichmüller theory of harmonic maps, J. Differential Geom. 29 (1989), no. 2, 449–479. MR 982185
- Michael Wolf, High energy degeneration of harmonic maps between surfaces and rays in Teichmüller space, Topology 30 (1991), no. 4, 517–540. MR 1133870, DOI 10.1016/0040-9383(91)90037-5
Bibliographic Information
- I. Anić
- Affiliation: Faculty of Mathematics, University of Belgrade, Studentski Trg 16, Belgrade, Yugoslavia
- Email: ianic@matf.bg.ac.yu
- V. Marković
- Affiliation: School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
- Email: markovic@math.umn.edu
- M. Mateljević
- Affiliation: Faculty of Mathematics, University of Belgrade, Studentski Trg 16, Belgrade, Yugoslavia
- Email: miodrag@matf.bg.ac.yu
- Received by editor(s): April 20, 1998
- Received by editor(s) in revised form: August 27, 1998, and November 18, 1998
- Published electronically: April 7, 2000
- Communicated by: Albert Baernstein II
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 2947-2956
- MSC (1991): Primary 30F30; Secondary 32G15, 58E20
- DOI: https://doi.org/10.1090/S0002-9939-00-05325-9
- MathSciNet review: 1664317