On reflexivity of direct sums
HTML articles powered by AMS MathViewer
- by V. P. Camillo and K. R. Fuller
- Proc. Amer. Math. Soc. 128 (2000), 2855-2862
- DOI: https://doi.org/10.1090/S0002-9939-00-05331-4
- Published electronically: April 28, 2000
- PDF | Request permission
Abstract:
Necessary and sufficient conditions are presented to insure that the direct sum of two reflexive representations of a finite dimensional algebra is reflexive, and it is shown that for each such algebra, there is an integer $k$ such that the direct sum of $k$ copies of each of its representations is reflexive. Given a ring $\Delta ,$ our results are actually presented in the more general setting of $\Delta$-representations of a ring $R.$References
- Frank W. Anderson and Kent R. Fuller, Rings and categories of modules, 2nd ed., Graduate Texts in Mathematics, vol. 13, Springer-Verlag, New York, 1992. MR 1245487, DOI 10.1007/978-1-4612-4418-9
- Edward A. Azoff, $K$-reflexivity in finite dimensional spaces, Duke Math. J. 40 (1973), 821–830. MR 331081
- Edward A. Azoff and Marek Ptak, On rank two linear transformations and reflexivity, J. London Math. Soc. (2) 53 (1996), no. 2, 383–396. MR 1373068, DOI 10.1112/jlms/53.2.383
- Sheila Brenner and M. C. R. Butler, Endomorphism rings of vector spaces and torsion free abelian groups, J. London Math. Soc. 40 (1965), 183–187. MR 174593, DOI 10.1112/jlms/s1-40.1.183
- James A. Deddens, Every isometry is reflexive, Proc. Amer. Math. Soc. 28 (1971), 509–512. MR 278099, DOI 10.1090/S0002-9939-1971-0278099-7
- J. A. Deddens and P. A. Fillmore, Reflexive linear transformations, Linear Algebra Appl. 10 (1975), 89–93. MR 358390, DOI 10.1016/0024-3795(75)90099-3
- Lifeng Ding, Separating vectors and reflexivity, Linear Algebra Appl. 174 (1992), 37–52. MR 1176449, DOI 10.1016/0024-3795(92)90040-H
- Kent R. Fuller, Algebras from diagrams, J. Pure Appl. Algebra 48 (1987), no. 1-2, 23–37. MR 915987, DOI 10.1016/0022-4049(87)90105-8
- K. R. Fuller, W. K. Nicholson, and J. F. Watters, Reflexive bimodules, Canad. J. Math. 41 (1989), no. 4, 592–611. MR 1012618, DOI 10.4153/CJM-1989-026-x
- K. R. Fuller, W. K. Nicholson, and J. F. Watters, Direct sums of reflexive modules, Linear Algebra Appl. 239 (1996), 201–214. MR 1384923, DOI 10.1016/S0024-3795(96)90012-9
- K. R. Fuller, W. K. Nicholson, and J. F. Watters, On $k$-reflexive representations of algebras, Proc. Amer. Math. Soc. 125 (1997), no. 1, 47–50. MR 1363461, DOI 10.1090/S0002-9939-97-03666-6
- Javad Faghih Habibi and William H. Gustafson, Reflexive serial algebras, Linear Algebra Appl. 99 (1988), 217–223. MR 925158, DOI 10.1016/0024-3795(88)90133-4
- Don Hadwin, Algebraically reflexive linear transformations, Linear and Multilinear Algebra 14 (1983), no. 3, 225–233. MR 718951, DOI 10.1080/03081088308817559
- P. R. Halmos, Reflexive lattices of subspaces, J. London Math. Soc. (2) 4 (1971), 257–263. MR 288612, DOI 10.1112/jlms/s2-4.2.257
- N. Snashall, Reflexivity of modules over QF-3 algebras, Comm. in Algebra 26 (1998), 4233–4242.
Bibliographic Information
- V. P. Camillo
- Affiliation: Department of Mathematics, University of Iowa, Iowa City, Iowa 52242
- Email: camillo@math.uiowa.edu
- K. R. Fuller
- Affiliation: Department of Mathematics, University of Iowa, Iowa City, Iowa 52242
- Email: kfuller@math.uiowa.edu
- Received by editor(s): September 10, 1998
- Received by editor(s) in revised form: November 10, 1998
- Published electronically: April 28, 2000
- Communicated by: Ken Goodearl
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 2855-2862
- MSC (1991): Primary 16D20, 16G99, 16P10; Secondary 47A15
- DOI: https://doi.org/10.1090/S0002-9939-00-05331-4
- MathSciNet review: 1664341