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MAXIMAL INEQUALITIES
FOR THE ORNSTEIN-UHLENBECK PROCESS

S. E. GRAVERSEN AND G. PESKIR

(Communicated by Stanley Sawyer)

Abstract. Let V = (Vt)t≥0 be the Ornstein-Uhlenbeck velocity process solv-
ing

dVt = −βVtdt + dBt

with V0 = 0 , where β > 0 and B = (Bt)t≥0 is a standard Brownian motion.
Then there exist universal constants C1 > 0 and C2 > 0 such that

C1√
β
E
√

log(1 + βτ) ≤ E
(

max
0≤t≤τ

|Vt|
)
≤ C2√

β
E
√

log(1 + βτ)

for all stopping times τ of V . In particular, this yields the existence of
universal constants D1 > 0 and D2 > 0 such that

D1E
√

log
(
1 + log(1 + τ)

)
≤ E

(
max

0≤t≤τ

|Bt|√
1 + t

)
≤ D2E

√
log
(
1 + log(1 + τ)

)
for all stopping times τ of B. This inequality may be viewed as a stopped law
of iterated logarithm. The method of proof relies upon a variant of Lenglart’s
domination principle and makes use of Itô calculus.

1. Introduction

Consider the random movement of a Brownian particle suspended in a liq-
uid. The Einstein-Smoluchowski theory suggests the standard Brownian motion
Bt ∼ N(0, t) as a model for the position of the particle. The Ornstein-Uhlenbeck
theory [6] relies upon Newtonian mechanics and suggests that the position of the
Brownian particle should be modelled asXt =

∫ t
0 Vrdr where Vt = e−βt

∫ t
0 e

βrdBr ∼
N(0, 1

2β (1− e−2βt)) is the Brownian velocity solving the Langevin equation:

dVt = −βVtdt+ dBt (β > 0)(1.1)

(see [3] for more details). The Einstein-Smoluchowski theory may be seen as an
idealised Ornstein-Uhlenbeck theory, and predictions of either cannot be distin-
guished by experiment. However, if the Brownian particle is under influence of an
external force, the Einstein-Smoluchowski theory breaks down, while the Ornstein-
Uhlenbeck theory remains successful (see [3], pp. 53–78). Perhaps one of the main
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reasons that the Einstein-Smoluchowski model is so popular in stochastic calculus
today is due to the fact that the standard Brownian motion is a martingale.

Consider the standard Brownian motion B = (Bt)t≥0 . Then the celebrated
Burkholder-Gundy inequality [1] states that there exist universal constants A1 > 0
and A2 > 0 such that

A1E
(√

τ
)
≤ E

(
max

0≤t≤τ
|Bt|

)
≤ A2E

(√
τ
)

(1.2)

for all stopping times τ of B . In other words, and less formally, this inequality
states that the maximal position of the Brownian particle, taken up to a random
instant of time τ which does not anticipate the future, in average behaves as

√
τ .

In this note we address the same question for the velocity process V = (Vt)t≥0 .
Our main result (Theorem 2.5) shows that the maximal velocity of the Brownian
particle, taken up to a random instant of time τ which does not anticipate the
future, in average behaves as

√
log(1 + τ). In view of the “reverse” drift term in

(1.1), which is due to a “frictional” force towards the origin (equilibrium state of
velocity zero), the quantitative difference in the result is in agreement with intuition.
The result of Theorem 2.5 can also be restated in terms of the standard Brownian
motionB , and this may be viewed as a stopped law of iterated logarithm (Corollary
2.7).

2. The result and proof

The following domination principle was initially proved in [2] in the case H(x) =
xp for 0 < p < 1. Its extension to more general functions x 7→ H(x) follows along
the same lines and can be found in [5] (pp. 155–156). This extension appears
crucial in our treatment below, and we present the proof for completeness.

Proposition 2.1 (Lenglart). Let (Ω,F , (Ft)t≥0, P ) be a filtered probability space,
let X = (Xt)t≥0 be an (Ft)-adapted non-negative right-continuous process, let A =
(At)t≥0 be an (Ft)-adapted increasing continuous process satisfying A0 = 0 , and let
H : R+ → R+ be an increasing continuous function satisfying H(0) = 0 . Assume
that

E(Xτ ) ≤ E(Aτ )(2.1)

for all bounded (Ft)-stopping times τ . Then

E

(
sup

0≤t≤τ
H(Xt)

)
≤ E

(
H̃(Aτ )

)
(2.2)

for all (Ft)-stopping times τ , where

H̃(x) = x

∫ ∞
x

1
s
dH(s) + 2H(x)(2.3)

for all x ≥ 0.

Proof. By Fubini’s theorem we obtain

E

(
sup

0≤t≤τ
H(Xt)

)
≤ E

(
H

(
sup

0≤t≤τ
Xt

))
= E

(∫ ∞
0

1{
sup0≤t≤τ Xt>s

}dH(s)
)(2.4)

≤
∫ ∞

0

(
P

{
sup

0≤t≤τ
Xt > s,Aτ ≤ s

}
+ P

{
Aτ > s

})
dH(s)
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since s 7→ H(s) is increasing and continuous. Consider the following stopping times:

τ1 = inf{t > 0 |Xt > s},(2.5)

τ2 = inf{t > 0 |At > s}.

Then by Markov’s inequality and (2.1) we find:

P

{
sup

0≤t≤τ
Xt > s,Aτ ≤ s

}
≤ P

{
τ1 ≤ τ, τ2 ≥ τ

}
≤ P

{
Xτ1∧τ2∧τ ≥ s

}
(2.6)

≤ 1
s
E
(
Aτ1∧τ2∧τ

)
whenever τ is bounded. From (2.4) and (2.6) we can conclude:

E

(
sup

0≤t≤τ
H(Xt)

)
≤
∫ ∞

0

(
1
s
E
(
Aτ1{

Aτ≤s
})+ 2P

{
Aτ > s

})
dH(s)(2.7)

≤ E
(
Aτ

∫ ∞
Aτ

1
s
dH(s)

)
+ 2E

(
H(Aτ )

)
= E

(
H̃(Aτ )

)
for all bounded τ . Finally, observe that x 7→ H̃(x) is increasing, and pass to the
limit when k → ∞ to reach any τ through bounded ones τ ∧ k . This completes
the proof.

Remark 2.2. If H(x) = xp with 0 < p < 1 , then H̃(x) = ((2 − p)/(1 − p))xp ; if
H(x) = x, then H̃(x) ≡ +∞ , and the bound on the right-hand side in (2.2) is
non-interesting. Generally, the right-hand side in (2.2) gives a non-trivial bound
if H(x) tends to infinity as slow as xp for some 0 < p < 1; the bound is better
(asymptotically optimal) if the error in (2.1) is smaller (negligible).

1. The initial result which we state now is motivated by the considerations in [4].
This is addressed in more detail in Remark 2.4 following the proof below.

Theorem 2.3. Let V = (Vt)t≥0 be the Ornstein-Uhlenbeck velocity process solving
(1.1) with V0 = 0 , where B = (Bt)t≥0 is a standard Brownian motion. Introduce
the following functional:

It =
∫ t

0

eβV
2
r dr.(2.8)

Then there exist universal constants A1 > 0 and A2 > 0 such that

A1√
β
E

√
log
(

1 + βIτ

)
≤ E

(
max

0≤t≤τ
|Vt|
)
≤ A2√

β
E

√
log
(

1 + βIτ

)
(2.9)

for all stopping times τ of V .

Proof. If x 7→ F (x) is even and C2 , then by Itô’s formula we find:

F
(
|Vt|
)

= F (0) +
∫ t

0

(
LV F

)
(Vr)dr +

∫ t

0

F ′(Vr)dBr(2.10)

where LV denotes the infinitesimal generator of V :

LV = −βv ∂
∂v

+
1
2
∂2

∂v2
.(2.11)
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Motivated by our considerations in [4], we shall set

F (v) =
1
β

(
eβv

2
− 1
)
.(2.12)

Then it is easily verified that LV (F ) = c where c(v) = eβv
2
. By applying the

optional sampling theorem in (2.10), it follows that

E
(
F
(
|Vτ |

))
= E

(
Iτ
)

(2.13)

for all bounded stopping times τ of V . This shows that the condition (2.1) is
satisfied with Xt = F (|Vt|) and At = It . Denote H(x) = F−1(x) and observe that

H(x) = H(x;β) =
1√
β

√
log(1 + βx)(2.14)

where by H(x;β) we indicate the dependence on β . By (2.3) we then have

H̃(x;β) = x

∫ ∞
x

1
s
dH(s;β) + 2H(x;β).(2.15)

Consider the following function:

G(x;β) =
x

H(x;β)

∫ ∞
x

1
s
dH(s;β).(2.16)

Observe that for all x we have:

G(x;β) = G(βx; 1).(2.17)

Thus, if we want to compute the limit of G(x;β) when x → ∞ or x → 0 , it is no
restriction to assume that β = 1. Note that

G(x; 1) =
x

2
√

log(1 + x)

∫ ∞
x

ds√
log(1 + s)(1 + s)s

.(2.18)

Elementary calculations show that

lim
x→0

G(x; 1) = 1,(2.19)

lim
x→∞

G(x; 1) = 0,(2.20)

0 ≤ G(x; 1) ≤ 1 (∀x > 0).(2.21)

From (2.15) we then find:

H̃(x;β) ≤ 3H(x;β)(2.22)

for all x ≥ 0 , and hence the right-hand inequality in (2.9) follows from (2.2) and
(2.14).

To prove the left-hand inequality in (2.9), we shall note by (2.13) that

E
(
Iτ
)
≤ E

(
max

0≤t≤τ
F
(
|Vt|
))

(2.23)

for all bounded stopping times τ of V . Thus, the left-hand inequality in (2.9) follows
from (2.2) and (2.14) upon the identification Xt = It and At = max0≤r≤t F (|Vr |) .
The proof is complete.
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Remark 2.4. It was proved in [4] that

E

(
max

0≤t≤τ
|Vt|
)
≤ C√

β

√
logE

(
eβV

2
τ

)
(2.24)

for all stopping times τ of V for which the process (eβV
2
τ∧t)t≥0 is uniformly inte-

grable; by Itô’s formula this inequality is equivalently written as follows:

E

(
max

0≤t≤τ
|Vt|
)
≤ C√

β

√
log
(

1 + βE(Iτ )
)

(2.25)

where C > 0 is some constant. Our result (2.9) shows that the second expectation
sign in (2.25) can be pulled out in front of the square-root and logarithm sign; in
view of Jensen’s inequality this bound is better, although not easily computed; as
the inequality (2.9) above is two-sided, this also detects the real size of the error
in the terminal-value bound (2.24); observe also that our proof above establishes
(2.9) with A1 = 1/3 and A2 = 3 ; thus C in (2.24) can be taken as 3.

2. A main disadvantage of the inequality (2.9) is the complicated form of the func-
tional Iτ . In our attempt to understand better its size, we now prove that Iτ in
(2.9) can be replaced by τ . In view of the obvious inequality Iτ ≥ τ , and that
Iτ is actually much larger than τ , this fact may seem surprising at first. How-
ever, noting that we also have the logarithm function in (2.9), and recalling that
the variance of Vt ∼ N(0, 1

2β (1 − e−2βt)) remains bounded over all t , we see that
everything agrees well with intuition.

Theorem 2.5. Let V = (Vt)t≥0 be the Ornstein-Uhlenbeck velocity process solving
(1.1) with V0 = 0 , where B = (Bt)t≥0 is a standard Brownian motion. Then there
exist universal constants C1 > 0 and C2 > 0 such that

C1√
β
E

√
log
(

1 + βτ
)
≤ E

(
max

0≤t≤τ
|Vt|
)
≤ C2√

β
E

√
log
(

1 + βτ
)

(2.26)

for all stopping times τ of V .

Proof. If x 7→ F (x) is even and C2 , then by Itô’s formula we know that (2.10)
holds. Motivated by this expression, consider the equation:

LV (F ) = 1(2.27)

with LV as in (2.11). The general solution of (2.27) is given by

F (x) =
∫ x

0

eβu
2
(

2
∫ u

0

e−βv
2
dv +K1

)
du+K2(2.28)

where K1 and K2 are constants. Motivated by the fact that A from Proposition
2.1 should satisfy A0 = 0 , we shall impose the condition F (0) = 0 , which implies
that K2 = 0 . Imposing further that F ′(0) = 0 , which implies that K1 = 0 , we
obtain the following solution of (2.27):

F (x) = 2
∫ x

0

eβu
2
∫ u

0

e−βv
2
dvdu.(2.29)

Observe that x 7→ F (x) is even and C2 , and thus (2.10) holds.
Applying the optional sampling theorem in (2.10), and using (2.27), we see that

E
(
F
(
|Vτ |

))
= E(τ)(2.30)
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for all bounded stopping times τ of V . Thus the condition (2.1) is satisfied with
Xt = F (|Vt|) and At = t . From (2.30) we also see that

E(τ) ≤ E
(

max
0≤t≤τ

F
(
|Vt|
))

(2.31)

for all bounded stopping times τ of V . Thus the condition (2.1) is also satisfied
with Xt = t and At = max0≤r≤t F (|Vr|) .

Denoting H(x) = F−1(x) , it is possible to prove that
1√
β

√
log(1 + βx) ≤ H(x) ≤ D√

β

√
log(1 + βx)(2.32)

for all x ≥ 0 , where D > 1 is some constant. The left-hand side in (2.32) is
verified straightforwardly, while the right-hand side requires some more effort. Our
calculations show that one may take D = 1.1265 . . . .

The result now follows from (2.30)–(2.32) and (2.2) above upon verifying that
H̃(x)/H(x) ≤ 3 for all x > 0; observe that F (x) ≥ x2 and F ′(x) ≥ 2x so that
H(x) ≤ √x and H ′(x) ≤ 1/(2

√
x) for all x > 0 . The proof is complete.

Remark 2.6. Observe from the proof above that in (2.26) one may take C1 = 1/3
and C2 = 3D = 3.3795 . . . . Note also that (1.2) is obtained from (2.26) by letting
β ↓ 0 .

Corollary 2.7. Let B = (Bt)t≥0 be standard Brownian motion. Then there exist
universal constants D1 > 0 and D2 > 0 such that

D1E
√

log
(
1 + log(1 + τ)

)
≤ E

(
max

0≤t≤τ

|Bt|√
1 + t

)
≤ D2E

√
log
(
1 + log(1 + τ)

)(2.33)

for all stopping times τ of B .

Proof. In the setting of Theorem 2.5 above, we shall use the well-known fact that

Vt =
1√
2β
e−βtB(e2βt − 1)(2.34)

is an Ornstein-Uhlenbeck process. Set σt = e2βt − 1 ; then τ is a stopping time of
V if and only if στ is a stopping time of B . From (2.34) we see that√

2β|Vt| =
|Bσt |√
1 + σt

.(2.35)

Set H(x;β) = (1/
√
β)
√

log(1 + βx) ; then (2.26) above can equivalently be rewrit-
ten as follows:

E

(
max

0≤t≤τ

|Bσt |√
1 + σt

)
∼
√

2βE
(
H
(
τ ;β

))
.(2.36)

Substituting σt = u in (2.36), we see that

E

(
max

0≤u≤σ(τ)

|Bu|√
1 + u

)
∼
√

2βE
(
H
(
σ−1

(
σ(τ)

)
;β
))
.(2.37)

Observe that
√

2βH(x;β) =
√

2
√

log(1 + βx) and σ−1(u) = (1/2β) log(1 + u) .
Thus √

2βH
(
σ−1

(
τ̃
)
;β
)

=
√

2

√
log
(

1 +
1
2

log
(
1 + τ̃

))
(2.38)
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where τ̃ = σ(τ) is a stopping time of B . However, since clearly

log
(

1 +
1
2

log
(
1 + x

))
∼ log

(
1 + log

(
1 + x

))
(2.39)

when x tends to 0 or ∞ , we see from (2.37) and (2.38) that (2.33) holds. The
proof is complete.

Corollary 2.8. Let M = (Mt)t≥0 be a continuous local martingale with the qua-
dratic variation process

(〈
M
〉
t

)
t≥0

. Then there exist universal constants D1 > 0
and D2 > 0 such that

D1E
√

log
(
1 + log(1 +

〈
M
〉
τ
)
)
≤ E

(
max

0≤t≤τ

|Mt|√
1 +

〈
M
〉
t

)
(2.40)

≤ D2E
√

log
(
1 + log(1 +

〈
M
〉
τ
)
)

for all stopping times τ of M .

Proof. It follows from Corollary 2.7 by a standard time-change argument (see [5]).
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