INCOMPRESSIBLE SURFACES IN HANDLEBODIES
AND CLOSED 3-MANIFOLDS OF HEEGAARD GENUS 2

RUIFENG QIU

(Communicated by Ronald A. Fintushel)

Abstract. In this paper, we shall prove that for any integer $n > 0$, 1) a handlebody of genus 2 contains a separating incompressible surface of genus n, 2) there exists a closed 3-manifold of Heegaard genus 2 which contains a separating incompressible surface of genus n.

1. Introduction

Let M be a 3-manifold, and let F be a properly embedded surface in M. F is said to be compressible if either F is a 2-sphere and F bounds a 3-cell in M, or there exists a disk $D \subset M$ such that $D \cap F = \partial D$, and ∂D is nontrivial on F. Otherwise F is said to be incompressible.

W. Jaco (see [3]) has proved that a handlebody of genus 2 contains a nonseparating incompressible surface of arbitrarily high genus, and asked the following question.

Question A. Does a handlebody of genus 2 contain a separating incompressible surface of arbitrarily high genus?

In the second section, we shall give an affirmative answer to this question. The main result is the following.

Theorem 2.7. A handlebody of genus 2 contains a separating incompressible surface S of arbitrarily high genus such that $|\partial S| = 1$.

If M is a closed 3-manifold of Heegaard genus 1, then M is homeomorphic to either a lens space or $S^2 \times S^1$. In the third section, we shall prove that the Heegaard genus of a closed 3-manifold M does not limit the genus of an incompressible surface in M. The main result is the following.

Theorem 3.10. For any integer $n > 0$, there exists a closed 3-manifold of Heegaard genus 2 which contains a separating incompressible surface of genus n.

If X is a manifold, we shall denote by ∂X the boundary of X, and by $|\partial X|$ the number of components of ∂X. If $F(x_1, \ldots, x_n)$ is a free group, and y is an element...
in F, we shall denote by $L(y)$ the minimal length of y with respect to the basis x_1, \ldots, x_n.

Some examples answering Jaco’s question have also been given by Hugh Howards in “Generating disjoint incompressible surfaces”, preprint, 1998.

2. INCOMPRESSIBLE SURFACES IN HANDLEBODIES

Let H_2 be a handlebody of genus 2, and let (D_1, D_2) be a set of basis disks of H_2. Let D be a separating disk of H_2 such that D_1 and D_2 lie on opposite sides of D. Suppose that $u_1, \ldots, u_{2n}, v_1, \ldots, v_{2n}$ are $4n$ points on ∂D as in Figure 1.

Suppose that $u_1 v_1, \ldots, u_{2n} v_{2n}$ are $2n$ arcs on ∂H_2 such that
1) $u_1 v_1$ is as in Figure 2,
2) $u_2 v_{2i-1}$ and $u_{2i-1} v_{2i}$ are as in Figure 3,
3) $u_{2i+1} v_{2i}$ and $u_{2i} v_{2i+1}$ are as in Figure 3 and
4) $u_k v_k$ is the union of $u_k v_{k-1}, v_{k-1} u_{k-1}$ and $u_{k-1} v_k$.

Then $u_i v_i \subset u_{i+1} v_{i+1}$.

Suppose that $N_k = u_k v_k \times B_k$, where B_k is a half disk in H_2 (as in Figure 4) such that
1) $\{u_i\} \times B_k \cup \{v_i\} \times B_k \subset D(i \leq k)$, and
2) if $x \in u_k v_k$, then $\{x\} \times B_i \subset \text{int}(\{x\} \times B_k)(i > k)$.

Let $C_0 = D - \bigcup_{i=1}^{k-1}(\{u_i\} \times B_i) - \bigcup_{i=1}^{k-1}(\{v_i\} \times B_i)$, and $D_0 = \tilde{C}_0$. Let $C_i = \partial(u_i v_i \times B_i) - \partial H_2 - \{u_i\} \times B_i - \{v_i\} \times B_i$, and $D_i = \tilde{C}_i$, where $1 \leq i \leq k$. Let $S_k = \bigcup_{i=0}^{k} D_i$. Then S_k is a properly embedded surface in H_2 ($1 \leq k \leq 2n$). Let
$A_i = D_0 \cup D_i \ (i > 0)$. Then A_i is an annulus. Hence S_k is a union of k annuli A_1, \ldots, A_k along D_0.

Lemma 2.1. $|\partial S_{2k-1}| = 2$ and $|\partial S_{2k}| = 1 \ (1 \leq k \leq n)$.

Proof. It is clear that $|\partial S_1| = 2$. Since u_2 and v_2 lie in the two distinct components of ∂S_1, by construction, $|\partial S_2| = 1$. We can prove that $|\partial S_{2k-1}| = 2$ and $|\partial S_{2k}| = 1$ by induction, for $1 \leq k \leq n$. \hfill \square

Lemma 2.2. The genus of S_{2n} is n.

Proof. By construction, S_{2n} is a union of $2n$ annuli A_1, \ldots, A_{2n} along D_0. Hence $\pi_1(S_{2n}) = F(x_1, \ldots, x_{2n})$, where x_i is represented by the core of A_i. Since $|\partial S_{2n}| = 1$, the genus of S_{2n} is n. \hfill \square

Let $i : S_{2n} \longrightarrow H_2$ be the inclusion map, and $i_* : \pi_1(S_{2n}) \longrightarrow \pi_1(H_2)$ be the map induced by i. Suppose that a_1 and a_2 are the two generators of $\pi_1(H_2)$ shown in Figure 4. Then by construction we have

$i_*(x_1) = a_1^4,$

$i_*(x_2) = a_2^{-1} a_1^{-4} a_2^{-1},$

$i_*(x_{2i}) = a_2^{-1} (a_2 a_1)^{1-i} a_1^{-4} (a_1 a_2)^{1-i} a_2^{-1},$

$i_*(x_{2i+1}) = (a_1 a_2)^i a_1^4 (a_2 a_1)^i,$

$i_*(x_{2n}) = a_2^{-1} (a_2 a_1)^{1-n} a_1^{-4} (a_1 a_2)^{1-n} a_2^{-1}.$
Let y be a nontrivial element of $\pi_1(S_{2n})$. Then $y = \prod_{i=1}^{m} b_i$, where $b_i = \prod_{j=1}^{p_{ij}} b_{ij}$, $b_{ij} \in \{x_1, x_2, \ldots, x_{2n}\}$ and $m_i \geq 1$, such that

1) $p_{ij} \neq 0$.
2) for each $i, 1 \leq i \leq m$, either all the b_{ij}'s ($1 \leq j \leq m_i$) belong to $\{x_1, x_3, \ldots, x_{2n-1}\}$ or they all belong to $\{x_2, x_4, \ldots, x_{2n}\}$.
3) the b_{ij}'s belong to $\{x_1, x_3, \ldots, x_{2n-1}\}$ if and only if the $b_{i+1,j}$'s belong to $\{x_2, x_4, \ldots, x_{2n}\}$, and
4) $b_{ij} \neq b_{i+1,j+1}$.

Lemma 2.3. If $b_{ij} \in \{x_1, \ldots, x_{2n-1}\}$ for $j \in \{1, \ldots, m_i\}$, then $L(i_*(b_i)) > 1$. Also, the first letter of $i_*(b_i)$ is a_1 or a_1^{-1}, and the last letter of $i_*(b_i)$ is a_2 or a_2^{-1}.

Proof. Suppose that $b_{ij} = x_{2l_j+1}$, where $l_j \in \{0, 1, \ldots, n-1\}$. Then

$$i_*(b_{ij}) = (a_1 a_2)^{l_j} a_1^k (a_2 a_1)^{l_j} \cdots (a_1 a_2)^{l_j} a_1^k (a_2 a_1)^{l_j},$$ or

$$i_*(b_{ij}) = (a_2 a_1)^{-l_j} a_1^{-4}(a_1 a_2)^{-l_j} \cdots (a_2 a_1)^{-l_j} a_1^{-4}(a_1 a_2)^{-l_j}.$$ If $p_{ij} > 0$, and $p_{ij+1} > 0$, then

$$i_*(b_{ij+1}) = (a_1 a_2)^{l_j} a_1^{k} (a_2 a_1)^{l_j} (a_1 a_2)^{l_j+1} a_1^k (a_2 a_1)^{l_j+1}.$$ If $p_{ij} > 0$, and $p_{ij+1} < 0$, then

$$i_*(b_{ij+1}) = (a_1 a_2)^{l_j} a_1^{k} (a_2 a_1)^{l_j} (a_1 a_2)^{-l_j+1} a_1^{-4}(a_1 a_2)^{-l_j+1}.$$ Since $b_{ij} \neq b_{ij+1}$, $l_j \neq l_{j+1}$. It is easy to see that the first and last letters of $i_*(b_i)$ are a_1 or a_1^{-1}, and $L(i_*(b_i)) \geq 2$.

Lemma 2.4. If $b_{ij} \in \{x_2, \ldots, x_{2n}\}$, then $L(i_*(b_i)) > 1$. Also, the first letter of $i_*(b_i)$ is a_2 or a_2^{-1}, and the last letter of $i_*(b_i)$ is a_2 or a_2^{-1}.

Proof. The proof of Lemma 2.4 is similar to the proof of Lemma 2.3.

Lemma 2.5. S_{2n} is incompressible in H_2.

Proof. Suppose that y is a nontrivial element of $\pi_1(S_{2n})$. Then $y = \prod_{i=1}^{m} b_i$, where b_i satisfies the above conditions. By Lemma 2.3 and Lemma 2.4, $L(i_*(y)) = \sum_{i=1}^{m} L(i_*(b_i))$. Hence $L(i_*(y)) > 1$, and S_{2n} is incompressible in H_2.

Lemma 2.6. S_{2n} is separating in H_2.

Proof. By construction, $[\partial S_{2n}] = 0$ in $H_1(\partial H_2)$. Hence ∂S_{2n} is separating on ∂H_2, and S_{2n} is separating in H_2.

Theorem 2.7. A handlebody of genus 2 contains a separating incompressible surface S of arbitrarily high genus such that $|\partial S| = 1$.

Proof. Let n be a positive integer, then S_{2n} is a separating incompressible surface in H_2 by the above argument.

Remark 1. In fact a handlebody of genus 2 also contains a separating incompressible surface S of arbitrarily high genus such that $|\partial S| = 2$. For example, S_{2n-1} is a separating incompressible surface of genus $n - 1$ in H_2.

Remark 2. For any positive integer n, there exist infinitely many separating incompressible surfaces of genus n in a handlebody of genus 2. For example, let $n \geq 3$. Then by the proof of Theorem 2.7 we can obtain another separating incompressible surface of genus n in H_2 by the same method as in the above construction.
Corollary 2.8. For any integer $n > 1$, a handlebody of genus n contains a separating incompressible surface S of arbitrarily high genus.

3. Incompressible surfaces in closed 3-manifolds of Heegaard genus 2

Let M be a compact 3-manifold with boundary. If c_1, \ldots, c_n are disjoint simple closed curves on ∂M, we denote by $\tau(M, \bigcup_{i=1}^{n} c_i)$ the manifold obtained by attaching 2-handles to M along disjoint regular neighborhoods of c_1, \ldots, c_n, and $M[c_1] \cdots [c_n]$ the manifold obtained by capping off possible 2-sphere components of $\partial \tau(M, \bigcup_{i=1}^{n} c_i)$. If c is a nontrivial simple closed curve on a toral component of ∂M, we denote by $M(c)$ the manifold $M[c]$. Now if $F(\neq S^2)$ is a separating incompressible closed surface in $\tau(M, \bigcup_{i=1}^{n} c_i)$, then F is also a separating incompressible surface in $M[c_1] \cdots [c_n]$.

If S is a properly embedded surface in M, we denote by \hat{S} the surface obtained by capping off the boundary components of S with disks in $\tau(M, \partial S)$.

Lemma 3.1. H_2 contains no closed incompressible surface.

Proof. Let D be a properly embedded disk in H_2 such that ∂D is nontrivial on ∂H_2. If F is a closed incompressible surface, then F may be isotoped to be disjoint from D. Hence a 3-cell contains a closed incompressible surface, a contradiction.

Lemma 3.2. Let M be a 3-manifold, and let J be a simple closed curve on ∂M such that $\partial M - J$ is incompressible. If M has compressible boundary, then $\tau(M, J)$ is a ∂-irreducible manifold.

Proof. See [4, Theorem 2].

Let H_2 be a handlebody of genus 2, and let S be a separating incompressible surface of genus $n > 0$ in H_2 such that $|\partial S| = 1$.

Lemma 3.3. $\tau(H_2, \partial S)$ is a ∂-irreducible 3-manifold, and \hat{S} is a separating closed incompressible surface of genus n in $\tau(H_2, \partial S)$.

Proof. Suppose that S separates H_2 into H, H' and ∂S separates ∂H_2 into T, T', such that $\partial H = S \cup T$ and $\partial H' = S \cup T'$.

Claim 1. $\partial H(\partial H')$ is compressible in $H(H')$.

Proof. If ∂H is incompressible in H, then ∂H is incompressible in H_2, contradicting Lemma 3.1.

Claim 2. $T(T')$ is incompressible in $H(H')$.

Proof. If T is compressible in H, then there exists a nontrivial simple closed curve c on T such that c bounds a disk D in H. Since the genus of ∂H_2 is 2, T is a once punctured torus whose boundary is isotopic to ∂S. Hence ∂S bounds a disk in H_2, a contradiction.

Since $\partial H(\partial H')$ is compressible in $H(H')$, and S and $T(T')$ are incompressible in $H(H')$, it follows that $\tau(H, \partial S)$ and $\tau(H', \partial S)$ are ∂-irreducible 3-manifolds by Lemma 3.2.

Since $\tau(H_2, \partial S) = \tau(H, \partial S) \cup \tau(H', \partial S)$, \hat{S} is a separating incompressible closed surface in $\tau(H_2, \partial S)$.

\]
Since the genus of \(\partial H_2 \) is 2, \(\partial \tau (H_2, \partial S) \) consists of two tori, \(T_1 \) and \(T_2 \), say.

Let \(M \) be a 3-manifold with one component \(T \) of \(\partial M \) a torus. If \(r_1 \) and \(r_2 \) are two slopes on \(T \), we shall denote by \(\Delta (r_1, r_2) \) the minimal geometric intersection number among all the curves representing the slopes.

Lemma 3.4. Let \(M \) be a \(\partial \)-irreducible 3-manifold with one component \(T \) of \(\partial M \) a torus, and let \(F \) be a closed incompressible surface in \(M \) which is not parallel to \(T \). If \(r_1 \) and \(r_2 \) are two slopes on \(T \) such that \(F \) is compressible in \(M(r_1) \) and \(M(r_2) \), then either

1) \(\Delta (r_1, r_2) \leq 1 \), or
2) there exists a slope \(r \) on \(T \) such that \(\Delta (r, r_1) \leq 1 \) and \(\Delta (r, r_2) \leq 1 \).

Proof. See [6, Theorem 1].

Corollary 3.5. Let \(M \) be a \(\partial \)-irreducible 3-manifold with one component \(T \) of \(\partial M \) a torus. If \(F \) is a closed incompressible surface in \(M \) which is not parallel to \(T \), then there exists a nontrivial simple closed curve \(c \) on \(T \) such that \(F \) is incompressible in \(M(c) \).

Lemma 3.6. There exist two nonseparating simple closed curves \(c_1 \) and \(c_2 \) on \(\partial H_2 \) such that \(c_1 \) is disjoint from \(\partial S \), and \(\tilde{S} \) is a separating incompressible surface in \(H_2[\partial S][c_1][c_2] \).

Proof. Suppose that \(\tilde{S} \) separates \(\tau (H_2, \partial S) \) into \(M_1 \) and \(M_2 \) such that \(T_1 \subset M_1 \) and \(T_2 \subset M_2 \). By the proof of Lemma 3.1, \(M_i \) is \(\partial \)-irreducible. Since \(\tilde{S} \) is not parallel to \(T_i \) in \(M_i \), by Corollary 3.5, there exists a simple closed curve \(c_i \) (\(1 \leq i \leq 2 \)) on \(T_i \) such that \(\tilde{S} \) is incompressible in \(M_i(c_i) \).

By an isotopy, we can suppose that \(c_i \) is disjoint from \(\partial S \). Hence \(\tilde{S} \) is incompressible in \(H_2[\partial S][c_1][c_2] \). It is easy to see that \(\tilde{S} \) is separating in \(H_2[\partial S][c_1][c_2] \). \(\square \)

Definition 3.7. Two simple closed curves \(\alpha \) and \(\beta \) on \(\partial M \) are said to be coplanar if some component of \(\partial M - \alpha \cup \beta \) is an annulus or a once punctured annulus.

Lemma 3.8. Suppose that \(\alpha \) is a nonseparating curve on \(\partial M \). If a separating curve \(\beta \) on \(\partial M \) is coplanar to \(\alpha \), then \(M[\alpha] = M[\beta][\alpha] \).

Proof. See [5, Lemma 5.1]. \(\square \)

Lemma 3.9. \(H_2[\partial S][c_1][c_2] = H_2[c_1][c_2] \).

Proof. Since \(c_1 \) is coplanar to \(\partial S \) on \(\partial H_2 \), we have \(H_2[\partial S][c_1][c_2] = H_2[c_1][c_2] \). \(\square \)

Theorem 3.10. For any integer \(n > 0 \), there exists a closed 3-manifold \(M \) of Heegaard genus 2 which contains a closed separating incompressible surface of genus \(n \).

Proof. Let \(H_2 \) be a handlebody of genus 2, and let \(S \) be a separating incompressible surface of genus \(n \) such that \(|\partial S| = 1 \). Then \(H_2[c_1][c_2] \) contains a separating incompressible surface \(\tilde{S} \) of genus \(n \), where \(c_1 \) and \(c_2 \) are disjoint nonseparating simple closed curves on \(\partial H_2 \) as in Lemma 3.5. Obviously the Heegaard genus of \(H_2[c_1][c_2] \) is 2. \(\square \)

Corollary 3.11. Suppose that \(m \geq 2 \). Then for any integer \(n > 0 \) there exists a closed 3-manifold of Heegaard genus \(m \) which contains a closed separating incompressible surface of genus \(n \).
In fact there are infinitely many simple closed curves c on ∂H_2 such that $\tau(H_2, c)$ contains a closed separating incompressible surface of genus n. This is shown by the following example.

Example. Let H_2 be a handlebody of genus 2. Let S_{2_m} be an incompressible surface of genus n constructed by the same method as the construction of S_{2_n} (as in Section 2), such that u_1v_1 intersects D_1 in m points. Then \hat{S}_{2_m} is incompressible in $\tau(H_2, \partial S_{2_m})$.

I am grateful to Professor R. Fintushel and the referee for their suggestions.

References

Department of Mathematics, Jilin University, Changchun 130023, People’s Republic of China

E-mail address: qrf@mail.jlu.edu.cn