A weighted uniform $L^{p}$–estimate of Bessel functions: A note on a paper of Guo
HTML articles powered by AMS MathViewer
- by Krzysztof Stempak
- Proc. Amer. Math. Soc. 128 (2000), 2943-2945
- DOI: https://doi.org/10.1090/S0002-9939-00-05365-X
- Published electronically: March 2, 2000
- PDF | Request permission
Abstract:
An improved Guo’s uniform $L^{p}$ estimate of Bessel functions is shown by using a uniform pointwise bound of Barceló and Córdoba.References
- Juan A. Barceló and Antonio Córdoba, Band-limited functions: $L^p$-convergence, Trans. Amer. Math. Soc. 313 (1989), no. 2, 655–669. MR 951885, DOI 10.1090/S0002-9947-1989-0951885-1
- A. Córdoba, The disc multiplier, Duke Math. J. 58 (1989), no. 1, 21–29. MR 1016411, DOI 10.1215/S0012-7094-89-05802-X
- Kanghui Guo, A uniform $L^p$ estimate of Bessel functions and distributions supported on $S^{n-1}$, Proc. Amer. Math. Soc. 125 (1997), no. 5, 1329–1340. MR 1363462, DOI 10.1090/S0002-9939-97-03667-8
- Juan L. Varona, Fourier series of functions whose Hankel transform is supported on $[0,1]$, Constr. Approx. 10 (1994), no. 1, 65–75. MR 1260359, DOI 10.1007/BF01205166
- G. N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1966.
Bibliographic Information
- Krzysztof Stempak
- Affiliation: Instytut Matematyki Politechniki Wrocławskiej, ul. Wyb. Wyspianskiego 27, 50-370 Wrocław, Poland
- Email: stempak@ulam.im.pwr.wroc.pl
- Received by editor(s): August 1, 1998
- Received by editor(s) in revised form: November 11, 1998
- Published electronically: March 2, 2000
- Additional Notes: This research was supported in part by KBN grant # 2 PO3A 048 15 and European Commision via the TMR network “Harmonic analysis”, contract no: ERB FMRX–CT97–0159.
- Communicated by: Christopher D. Sogge
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 2943-2945
- MSC (1991): Primary 33C10
- DOI: https://doi.org/10.1090/S0002-9939-00-05365-X
- MathSciNet review: 1664391