Some comparisons for Gaussian processes
HTML articles powered by AMS MathViewer
- by Richard A. Vitale
- Proc. Amer. Math. Soc. 128 (2000), 3043-3046
- DOI: https://doi.org/10.1090/S0002-9939-00-05367-3
- Published electronically: April 7, 2000
- PDF | Request permission
Abstract:
Extensions and variants are given for the well-known comparison principle for Gaussian processes based on ordering by pairwise distance.References
- Robert J. Adler, An introduction to continuity, extrema, and related topics for general Gaussian processes, Institute of Mathematical Statistics Lecture Notes—Monograph Series, vol. 12, Institute of Mathematical Statistics, Hayward, CA, 1990. MR 1088478
- Ralph Alexander, Lipschitzian mappings and total mean curvature of polyhedral surfaces. I, Trans. Amer. Math. Soc. 288 (1985), no. 2, 661–678. MR 776397, DOI 10.1090/S0002-9947-1985-0776397-6
- X. Fernique, Regularité des trajectoires des fonctions aléatoires gaussiennes, École d’Été de Probabilités de Saint-Flour, IV-1974, Lecture Notes in Math., Vol. 480, Springer, Berlin, 1975, pp. 1–96 (French). MR 0413238
- Fernique, X. (1997). Fonctions aléatoires gaussiennes vecteurs aléatoires gaussiens. CRM, Montreal.
- Yehoram Gordon, Some inequalities for Gaussian processes and applications, Israel J. Math. 50 (1985), no. 4, 265–289. MR 800188, DOI 10.1007/BF02759761
- Yehoram Gordon, Elliptically contoured distributions, Probab. Theory Related Fields 76 (1987), no. 4, 429–438. MR 917672, DOI 10.1007/BF00960067
- Yehoram Gordon, Majorization of Gaussian processes and geometric applications, Probab. Theory Related Fields 91 (1992), no. 2, 251–267. MR 1147616, DOI 10.1007/BF01291425
- Jean-Pierre Kahane, Une inégalité du type de Slepian et Gordon sur les processus gaussiens, Israel J. Math. 55 (1986), no. 1, 109–110 (French, with English summary). MR 858463, DOI 10.1007/BF02772698
- Ledoux, M. and Talagrand, M. (1985). Probability in Banach Spaces. Springer, New York.
- M. A. Lifshits, Gaussian random functions, Mathematics and its Applications, vol. 322, Kluwer Academic Publishers, Dordrecht, 1995. MR 1472736, DOI 10.1007/978-94-015-8474-6
- M. B. Marcus and L. A. Shepp, Sample behavior of Gaussian processes, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971) Univ. California Press, Berkeley, Calif., 1972, pp. 423–441. MR 0402896
- Schläfli, L. (1858). On the multiple integral whose limits are $p_1=a_1x+b_1y+\cdots +h_1z>0,\cdots ,p_n>0, x^2+y^2+\cdots +z^2<1$. Quart. J. Math. Pure Appl. 2, 261–301, also, (1860) 3, 54–68.
- David Slepian, The one-sided barrier problem for Gaussian noise, Bell System Tech. J. 41 (1962), 463–501. MR 133183, DOI 10.1002/j.1538-7305.1962.tb02419.x
- V. N. Sudakov, Gaussian random processes, and measures of solid angles in Hilbert space, Dokl. Akad. Nauk SSSR 197 (1971), 43–45 (Russian). MR 0288832
- V. N. Sudakov, Geometric problems in the theory of infinite-dimensional probability distributions, Proc. Steklov Inst. Math. 2 (1979), i–v, 1–178. Cover to cover translation of Trudy Mat. Inst. Steklov 141 (1976). MR 530375
- Richard A. Vitale, Covariance identities for normal variables via convex polytopes, Statist. Probab. Lett. 30 (1996), no. 4, 363–368. MR 1422588, DOI 10.1016/S0167-7152(96)00003-X
Bibliographic Information
- Richard A. Vitale
- Affiliation: Department of Statistics, U-120, University of Connecticut, Storrs, Connecticut 06269–3120
- Email: rvitale@uconnvm.uconn.edu
- Received by editor(s): October 12, 1998
- Received by editor(s) in revised form: November 12, 1998
- Published electronically: April 7, 2000
- Communicated by: Stanley Sawyer
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 3043-3046
- MSC (1991): Primary 60G15; Secondary 60E15
- DOI: https://doi.org/10.1090/S0002-9939-00-05367-3
- MathSciNet review: 1664383