Strong connectedness of the invertibles in a finite subdiagonal algebra
HTML articles powered by AMS MathViewer
- by Michael Marsalli and Graeme West
- Proc. Amer. Math. Soc. 128 (2000), 2967-2972
- DOI: https://doi.org/10.1090/S0002-9939-00-05388-0
- Published electronically: April 7, 2000
- PDF | Request permission
Abstract:
Suppose $H^\infty$ is a finite, subdiagonal subalgebra of a von Neumann algebra. We show that the invertible group of $H^\infty$ is strongly connected.References
- T. Ando, Comparison of norms $|||f(A)-f(B)|||$ and $|||f(|A-B|)|||$, Math. Z. 197 (1988), no. 3, 403–409. MR 926848, DOI 10.1007/BF01418338
- William B. Arveson, Analyticity in operator algebras, Amer. J. Math. 89 (1967), 578–642. MR 223899, DOI 10.2307/2373237
- Kenneth R. Davidson, Nest algebras, Pitman Research Notes in Mathematics Series, vol. 191, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1988. Triangular forms for operator algebras on Hilbert space. MR 972978
- Kenneth R. Davidson and John Lindsay Orr, The invertibles are connected in infinite multiplicity nest algebras, Bull. London Math. Soc. 27 (1995), no. 2, 155–161. MR 1325263, DOI 10.1112/blms/27.2.155
- Kenneth R. Davidson, John Lindsay Orr, and David R. Pitts, Connectedness of the invertibles in certain nest algebras, Canad. Math. Bull. 38 (1995), no. 4, 412–420. MR 1360589, DOI 10.4153/CMB-1995-060-6
- Peter G. Dodds and Theresa K. Dodds, On a submajorization inequality of T. Ando, Operator theory in function spaces and Banach lattices, Oper. Theory Adv. Appl., vol. 75, Birkhäuser, Basel, 1995, pp. 113–131. MR 1322502
- Thierry Fack and Hideki Kosaki, Generalized $s$-numbers of $\tau$-measurable operators, Pacific J. Math. 123 (1986), no. 2, 269–300. MR 840845
- Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Vol. I, Pure and Applied Mathematics, vol. 100, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. Elementary theory. MR 719020
- Gareth J. Knowles and Richard Saeks, On the structure of invertible operators in a nest-subalgebra of a von Neumann algebra, Topics in operator theory systems and networks (Rehovot, 1983) Oper. Theory Adv. Appl., vol. 12, Birkhäuser, Basel, 1984, pp. 303–317. MR 761365
- Michael Marsalli, Noncommutative $H^2$ spaces, Proc. Amer. Math. Soc. 125 (1997), no. 3, 779–784. MR 1350954, DOI 10.1090/S0002-9939-97-03590-9
- M. Marsalli and G. West, Noncommutative $H^p$ spaces, J. Operator Theory 40 (1998), 339–355.
- M. McAsey, P. Muhly, and K.-S. Saito, Nonselfadjoint crossed products, Hilbert space operators (Proc. Conf., Calif. State Univ., Long Beach, Calif., 1977) Lecture Notes in Math., vol. 693, Springer, Berlin, 1978, pp. 121–124. MR 526541
- Robert T. Powers and Erling Størmer, Free states of the canonical anticommutation relations, Comm. Math. Phys. 16 (1970), 1–33. MR 269230
- Kichi-Suke Saito, A note on invariant subspaces for finite maximal subdiagonal algebras, Proc. Amer. Math. Soc. 77 (1979), no. 3, 348–352. MR 545594, DOI 10.1090/S0002-9939-1979-0545594-X
Bibliographic Information
- Michael Marsalli
- Affiliation: Department of Mathematics, Campus Box 4520, Illinois State University, Normal, Illinois 61790-4520
- Email: marsalli@math.ilstu.edu
- Graeme West
- Affiliation: Department of Mathematics, University of the Witwatersrand, 2050 WITS, South Africa
- Email: 036weg@cosmos.wits.ac.za
- Received by editor(s): June 15, 1998
- Received by editor(s) in revised form: November 22, 1998
- Published electronically: April 7, 2000
- Communicated by: David R. Larson
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 2967-2972
- MSC (2000): Primary 46L52
- DOI: https://doi.org/10.1090/S0002-9939-00-05388-0
- MathSciNet review: 1670403