Noncomplex smooth 4-manifolds with genus-2 Lefschetz fibrations
HTML articles powered by AMS MathViewer
- by Burak Ozbagci and András I. Stipsicz
- Proc. Amer. Math. Soc. 128 (2000), 3125-3128
- DOI: https://doi.org/10.1090/S0002-9939-00-05390-9
- Published electronically: April 28, 2000
- PDF | Request permission
Abstract:
We construct noncomplex smooth 4-manifolds which admit genus-2 Lefschetz fibrations over $S^2$. The fibrations are necessarily hyperelliptic, and the resulting 4-manifolds are not even homotopy equivalent to complex surfaces. Furthermore, these examples show that fiber sums of holomorphic Lefschetz fibrations do not necessarily admit complex structures.References
- W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR 749574, DOI 10.1007/978-3-642-96754-2
- Robert Friedman and John W. Morgan, Smooth four-manifolds and complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 27, Springer-Verlag, Berlin, 1994. MR 1288304, DOI 10.1007/978-3-662-03028-8
- R. Fintushel and R. Stern, Private communication.
- Robert E. Gompf, Nuclei of elliptic surfaces, Topology 30 (1991), no. 3, 479–511. MR 1113691, DOI 10.1016/0040-9383(91)90027-2
- R. Gompf and A. Stipsicz, An introduction to 4-manifolds and Kirby calculus, AMS Graduate Studies in Math., vol. 20, 1999 .
- Y. Matsumoto, Lefschetz fibrations of genus two - a topological approach, Proceedings of the 37th Taniguchi Symposium on Topology and Teichmüller Spaces, ed. Sadayoshi Kojima et al., World Scientific (1996), pp. 123–148.
- I. Smith, Symplectic geometry of Lefschetz fibrations, Dissertation, Oxford, 1998.
Bibliographic Information
- Burak Ozbagci
- Affiliation: Department of Mathematics, University of California Irvine, Irvine, California 92697
- Address at time of publication: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
- MR Author ID: 643774
- ORCID: 0000-0002-9758-1045
- Email: bozbagci@math.uci.edu, bozbagci@math.msu.edu
- András I. Stipsicz
- Affiliation: Department of Analysis, ELTE TTK, Múzeum krt. 6-8, Budapest, Hungary
- MR Author ID: 346634
- Email: stipsicz@cs.elte.hu
- Received by editor(s): October 13, 1998
- Received by editor(s) in revised form: November 24, 1998
- Published electronically: April 28, 2000
- Communicated by: Ronald A. Fintushel
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 3125-3128
- MSC (2000): Primary 57R55; Secondary 57R65, 57M50
- DOI: https://doi.org/10.1090/S0002-9939-00-05390-9
- MathSciNet review: 1670411