Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2024 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Noncomplex smooth 4-manifolds with genus-2 Lefschetz fibrations
HTML articles powered by AMS MathViewer

by Burak Ozbagci and András I. Stipsicz
Proc. Amer. Math. Soc. 128 (2000), 3125-3128
DOI: https://doi.org/10.1090/S0002-9939-00-05390-9
Published electronically: April 28, 2000

Abstract:

We construct noncomplex smooth 4-manifolds which admit genus-2 Lefschetz fibrations over $S^2$. The fibrations are necessarily hyperelliptic, and the resulting 4-manifolds are not even homotopy equivalent to complex surfaces. Furthermore, these examples show that fiber sums of holomorphic Lefschetz fibrations do not necessarily admit complex structures.
References
  • W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR 749574, DOI 10.1007/978-3-642-96754-2
  • Robert Friedman and John W. Morgan, Smooth four-manifolds and complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 27, Springer-Verlag, Berlin, 1994. MR 1288304, DOI 10.1007/978-3-662-03028-8
  • R. Fintushel and R. Stern, Private communication.
  • Robert E. Gompf, Nuclei of elliptic surfaces, Topology 30 (1991), no. 3, 479–511. MR 1113691, DOI 10.1016/0040-9383(91)90027-2
  • R. Gompf and A. Stipsicz, An introduction to 4-manifolds and Kirby calculus, AMS Graduate Studies in Math., vol. 20, 1999 .
  • Y. Matsumoto, Lefschetz fibrations of genus two - a topological approach, Proceedings of the 37th Taniguchi Symposium on Topology and Teichmüller Spaces, ed. Sadayoshi Kojima et al., World Scientific (1996), pp. 123–148.
  • I. Smith, Symplectic geometry of Lefschetz fibrations, Dissertation, Oxford, 1998.
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 57R55, 57R65, 57M50
  • Retrieve articles in all journals with MSC (2000): 57R55, 57R65, 57M50
Bibliographic Information
  • Burak Ozbagci
  • Affiliation: Department of Mathematics, University of California Irvine, Irvine, California 92697
  • Address at time of publication: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
  • MR Author ID: 643774
  • ORCID: 0000-0002-9758-1045
  • Email: bozbagci@math.uci.edu, bozbagci@math.msu.edu
  • András I. Stipsicz
  • Affiliation: Department of Analysis, ELTE TTK, Múzeum krt. 6-8, Budapest, Hungary
  • MR Author ID: 346634
  • Email: stipsicz@cs.elte.hu
  • Received by editor(s): October 13, 1998
  • Received by editor(s) in revised form: November 24, 1998
  • Published electronically: April 28, 2000
  • Communicated by: Ronald A. Fintushel
  • © Copyright 2000 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 128 (2000), 3125-3128
  • MSC (2000): Primary 57R55; Secondary 57R65, 57M50
  • DOI: https://doi.org/10.1090/S0002-9939-00-05390-9
  • MathSciNet review: 1670411