A counterexample for $H^{\infty }$ approximable functions
HTML articles powered by AMS MathViewer
- by Daniel Suárez
- Proc. Amer. Math. Soc. 128 (2000), 3003-3007
- DOI: https://doi.org/10.1090/S0002-9939-00-05577-5
- Published electronically: April 28, 2000
- PDF | Request permission
Abstract:
Let $\mathbb {D}$ be the unit disk. We show that for some relatively closed set $F\subset \mathbb {D}$ there is a function $f$ that can be uniformly approximated on $F$ by functions of $H^{\infty }$, but such that $f$ cannot be written as $f= h+g$, with $h\in H^{\infty }$ and $g$ uniformly continuous on $F$. This answers a question of Stray.References
- Lennart Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547–559. MR 141789, DOI 10.2307/1970375
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- Kenneth Hoffman, Bounded analytic functions and Gleason parts, Ann. of Math. (2) 86 (1967), 74–111. MR 215102, DOI 10.2307/1970361
- Arne Stray, Mergelyan type theorems for some function spaces, Publ. Mat. 39 (1995), no. 1, 61–69. MR 1336356, DOI 10.5565/PUBLMAT_{3}9195_{0}4
- Fernando Daniel Suárez, Čech cohomology and covering dimension for the $H^\infty$ maximal ideal space, J. Funct. Anal. 123 (1994), no. 2, 233–263. MR 1283028, DOI 10.1006/jfan.1994.1088
- Ke He Zhu, Operator theory in function spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 139, Marcel Dekker, Inc., New York, 1990. MR 1074007
Bibliographic Information
- Daniel Suárez
- Affiliation: Departamento de Matemática, Facultad de Cs. Exactas y Naturales, UBA, Pab. I, Ciudad Universitaria, (1428) Núñez, Capital Federal, Argentina
- Address at time of publication: Departamento de Análisis Matemático, Universidad de La Laguna, 38271 La Laguna, Tenerife, Spain
- Email: dsuarez@dm.uba.ar
- Received by editor(s): December 8, 1998
- Published electronically: April 28, 2000
- Communicated by: Albert Baernstein II
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 3003-3007
- MSC (2000): Primary 30E10; Secondary 30H05
- DOI: https://doi.org/10.1090/S0002-9939-00-05577-5
- MathSciNet review: 1707532