## Compactness of Floquet isospectral sets for the matrix Hill’s equation

HTML articles powered by AMS MathViewer

- by Robert Carlson
- Proc. Amer. Math. Soc.
**128**(2000), 2933-2941 - DOI: https://doi.org/10.1090/S0002-9939-00-05634-3
- Published electronically: April 7, 2000
- PDF | Request permission

## Abstract:

Let $\mathcal {M}(Q)$ denote the set of self adjoint $K \times K$ potentials for the matrix Hill’s equation having the same Floquet multipliers as $-D^2 + Q$. Elementary methods are used to show that $\mathcal {M}(Q)$ has compact closure in the space of continuous matrix valued functions.## References

- Lars V. Ahlfors,
*Complex analysis: An introduction of the theory of analytic functions of one complex variable*, 2nd ed., McGraw-Hill Book Co., New York-Toronto-London, 1966. MR**0188405** - Bruno Després,
*The Borg theorem for the vectorial Hill’s equation*, Inverse Problems**11**(1995), no. 1, 97–121. MR**1313602** - Allan Finkel, Eli Isaacson, and Eugene Trubowitz,
*An explicit solution of the inverse periodic problem for Hill’s equation*, SIAM J. Math. Anal.**18**(1987), no. 1, 46–53. MR**871819**, DOI 10.1137/0518003 - Charles T. Fulton and Steven A. Pruess,
*Eigenvalue and eigenfunction asymptotics for regular Sturm-Liouville problems*, J. Math. Anal. Appl.**188**(1994), no. 1, 297–340. MR**1301734**, DOI 10.1006/jmaa.1994.1429 - John Garnett and Eugene Trubowitz,
*Gaps and bands of one-dimensional periodic Schrödinger operators*, Comment. Math. Helv.**59**(1984), no. 2, 258–312. MR**749109**, DOI 10.1007/BF02566350 - Katsunori Iwasaki,
*Inverse problem for Sturm-Liouville and Hill equations*, Ann. Mat. Pura Appl. (4)**149**(1987), 185–206. MR**932784**, DOI 10.1007/BF01773933 - Thomas Kappeler,
*Fibration of the phase space for the Korteweg-de Vries equation*, Ann. Inst. Fourier (Grenoble)**41**(1991), no. 3, 539–575 (English, with French summary). MR**1136595** - Peter D. Lax,
*Periodic solutions of the KdV equation*, Comm. Pure Appl. Math.**28**(1975), 141–188. MR**369963**, DOI 10.1002/cpa.3160280105 - Wilhelm Magnus and Stanley Winkler,
*Hill’s equation*, Dover Publications, Inc., New York, 1979. Corrected reprint of the 1966 edition. MR**559928** - H. P. McKean and P. van Moerbeke,
*The spectrum of Hill’s equation*, Invent. Math.**30**(1975), no. 3, 217–274. MR**397076**, DOI 10.1007/BF01425567 - H. P. McKean and E. Trubowitz,
*Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points*, Comm. Pure Appl. Math.**29**(1976), no. 2, 143–226. MR**427731**, DOI 10.1002/cpa.3160290203 - James Ralston and Eugene Trubowitz,
*Isospectral sets for boundary value problems on the unit interval*, Ergodic Theory Dynam. Systems**8$^*$**(1988), no. Charles Conley Memorial Issue, 301–358. MR**967643**, DOI 10.1017/S0143385700009470 - E. Trubowitz,
*The inverse problem for periodic potentials*, Comm. Pure Appl. Math.**30**(1977), no. 3, 321–337. MR**430403**, DOI 10.1002/cpa.3160300305

## Bibliographic Information

**Robert Carlson**- Affiliation: Department of Mathematics, University of Colorado at Colorado Springs, Colorado Springs, Colorado 80933
- Email: carlson@castle.uccs.edu
- Received by editor(s): November 10, 1998
- Published electronically: April 7, 2000
- Communicated by: Hal L. Smith
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**128**(2000), 2933-2941 - MSC (2000): Primary 34A55; Secondary 34L40
- DOI: https://doi.org/10.1090/S0002-9939-00-05634-3
- MathSciNet review: 1709743