Compactness of Floquet isospectral sets for the matrix Hill’s equation
HTML articles powered by AMS MathViewer
- by Robert Carlson
- Proc. Amer. Math. Soc. 128 (2000), 2933-2941
- DOI: https://doi.org/10.1090/S0002-9939-00-05634-3
- Published electronically: April 7, 2000
- PDF | Request permission
Abstract:
Let $\mathcal {M}(Q)$ denote the set of self adjoint $K \times K$ potentials for the matrix Hill’s equation having the same Floquet multipliers as $-D^2 + Q$. Elementary methods are used to show that $\mathcal {M}(Q)$ has compact closure in the space of continuous matrix valued functions.References
- Lars V. Ahlfors, Complex analysis: An introduction of the theory of analytic functions of one complex variable, 2nd ed., McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0188405
- Bruno Després, The Borg theorem for the vectorial Hill’s equation, Inverse Problems 11 (1995), no. 1, 97–121. MR 1313602
- Allan Finkel, Eli Isaacson, and Eugene Trubowitz, An explicit solution of the inverse periodic problem for Hill’s equation, SIAM J. Math. Anal. 18 (1987), no. 1, 46–53. MR 871819, DOI 10.1137/0518003
- Charles T. Fulton and Steven A. Pruess, Eigenvalue and eigenfunction asymptotics for regular Sturm-Liouville problems, J. Math. Anal. Appl. 188 (1994), no. 1, 297–340. MR 1301734, DOI 10.1006/jmaa.1994.1429
- John Garnett and Eugene Trubowitz, Gaps and bands of one-dimensional periodic Schrödinger operators, Comment. Math. Helv. 59 (1984), no. 2, 258–312. MR 749109, DOI 10.1007/BF02566350
- Katsunori Iwasaki, Inverse problem for Sturm-Liouville and Hill equations, Ann. Mat. Pura Appl. (4) 149 (1987), 185–206. MR 932784, DOI 10.1007/BF01773933
- Thomas Kappeler, Fibration of the phase space for the Korteweg-de Vries equation, Ann. Inst. Fourier (Grenoble) 41 (1991), no. 3, 539–575 (English, with French summary). MR 1136595
- Peter D. Lax, Periodic solutions of the KdV equation, Comm. Pure Appl. Math. 28 (1975), 141–188. MR 369963, DOI 10.1002/cpa.3160280105
- Wilhelm Magnus and Stanley Winkler, Hill’s equation, Dover Publications, Inc., New York, 1979. Corrected reprint of the 1966 edition. MR 559928
- H. P. McKean and P. van Moerbeke, The spectrum of Hill’s equation, Invent. Math. 30 (1975), no. 3, 217–274. MR 397076, DOI 10.1007/BF01425567
- H. P. McKean and E. Trubowitz, Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points, Comm. Pure Appl. Math. 29 (1976), no. 2, 143–226. MR 427731, DOI 10.1002/cpa.3160290203
- James Ralston and Eugene Trubowitz, Isospectral sets for boundary value problems on the unit interval, Ergodic Theory Dynam. Systems 8$^*$ (1988), no. Charles Conley Memorial Issue, 301–358. MR 967643, DOI 10.1017/S0143385700009470
- E. Trubowitz, The inverse problem for periodic potentials, Comm. Pure Appl. Math. 30 (1977), no. 3, 321–337. MR 430403, DOI 10.1002/cpa.3160300305
Bibliographic Information
- Robert Carlson
- Affiliation: Department of Mathematics, University of Colorado at Colorado Springs, Colorado Springs, Colorado 80933
- Email: carlson@castle.uccs.edu
- Received by editor(s): November 10, 1998
- Published electronically: April 7, 2000
- Communicated by: Hal L. Smith
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 2933-2941
- MSC (2000): Primary 34A55; Secondary 34L40
- DOI: https://doi.org/10.1090/S0002-9939-00-05634-3
- MathSciNet review: 1709743