On the number of generators of Cohen-Macaulay ideals
HTML articles powered by AMS MathViewer
- by Clare D’Cruz and J. K. Verma
- Proc. Amer. Math. Soc. 128 (2000), 3185-3190
- DOI: https://doi.org/10.1090/S0002-9939-00-05410-1
- Published electronically: June 7, 2000
- PDF | Request permission
Abstract:
Several bounds on the number of generators of Cohen-Macaulay ideals known in the literature follow from a simple inequality which bounds the number of generators of such ideals in terms of mixed multiplicities. Results of Cohen and Akizuki, Abhyankar, Sally, Rees and Boratynski-Eisenbud-Rees are deduced very easily from this inequality.References
- Shreeram Shankar Abhyankar, Local rings of high embedding dimension, Amer. J. Math. 89 (1967), 1073–1077. MR 220723, DOI 10.2307/2373418
- Y. Akizuki, Zur Idealtheorie der einartigen Ringbereiche mit dem Teilerkettensatz, Jap. J. Math. 14 (1938), 85-102.
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- Maksymillian Boratyński, David Eisenbud, and David Rees, On the number of generators of ideals in local Cohen-Macaulay rings, J. Algebra 57 (1979), no. 1, 77–81. MR 533101, DOI 10.1016/0021-8693(79)90209-6
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- L. R. Doering, Tor Gunston and W. Vasconcelos, Cohomological degrees and Hilbert functions of graded modules, Amer. J. Math. 120 (1998), 493-504.
- Daniel Katz and J. K. Verma, Extended Rees algebras and mixed multiplicities, Math. Z. 202 (1989), no. 1, 111–128. MR 1007742, DOI 10.1007/BF01180686
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- D. Rees, ${\mathfrak {a}}$-transforms of local rings and a theorem on multiplicities of ideals, Proc. Cambridge Philos. Soc. 57 (1961), 8–17. MR 118750, DOI 10.1017/s0305004100034800
- D. Rees, Multiplicities, Hilbert functions and degree functions, Commutative algebra: Durham 1981 (Durham, 1981) London Math. Soc. Lecture Note Ser., vol. 72, Cambridge Univ. Press, Cambridge-New York, 1982, pp. 170–178. MR 693635
- D. Rees, Generalizations of reductions and mixed multiplicities, J. London Math. Soc. (2) 29 (1984), no. 3, 397–414. MR 754926, DOI 10.1112/jlms/s2-29.3.397
- D. Rees, Estimates for the minimum number of generators for Cohen-Macaulay ideals , preprint.
- D. Rees and R. Y. Sharp, On a theorem of B. Teissier on multiplicities of ideals in local rings, J. London Math. Soc. (2) 18 (1978), no. 3, 449–463. MR 518229, DOI 10.1112/jlms/s2-18.3.449
- J. D. Sally, Bounds for the number of generators of Cohen-Macaulay ideals, Pacific J. Math. 63(1976), 517-520.
- Bernard Teissier, Cycles évanescents, sections planes et conditions de Whitney, Singularités à Cargèse (Rencontre Singularités Géom. Anal., Inst. Études Sci., Cargèse, 1972) Astérisque, Nos. 7 et 8, Soc. Math. France, Paris, 1973, pp. 285–362 (French). MR 0374482
- B. Teissier, Sur une inégalité à la Minkowski pour les multiplicités, appendix to : D. Eisenbud and H. Levine, an algebraic formula for the degree of $C^{\infty }$ map-germ Ann. Math. 106 (1977), 19-44.
- G. Valla, Generators of ideals and multiplicities, Comm. Algebra 15(1981), 1541-1549.
Bibliographic Information
- Clare D’Cruz
- Affiliation: SPIC Mathematical Institute, 92 G. N. Chetty Road, T. Nagar, Chennai 600 017, India
- Email: clare@smi.ernet.in
- J. K. Verma
- Affiliation: Department of Mathematics, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India
- MR Author ID: 177990
- Email: jkv@math.iitb.ernet.in
- Received by editor(s): October 7, 1998
- Received by editor(s) in revised form: January 7, 1999
- Published electronically: June 7, 2000
- Additional Notes: Presented at the first national meeting of commutative algebra and algebraic geometry held at the Institute of Astrophysics, Kodaikanal, India, March 1998.
- Communicated by: Wolmer V. Vasconcelos
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 3185-3190
- MSC (1991): Primary 13H10, 13D40
- DOI: https://doi.org/10.1090/S0002-9939-00-05410-1
- MathSciNet review: 1676364