Superposition operator in Sobolev spaces on domains
HTML articles powered by AMS MathViewer
- by Denis A. Labutin
- Proc. Amer. Math. Soc. 128 (2000), 3399-3403
- DOI: https://doi.org/10.1090/S0002-9939-00-05421-6
- Published electronically: May 11, 2000
- PDF | Request permission
Abstract:
For an arbitrary open set $\Omega \subset \mathbb {R}^n$ we characterize all functions $G$ on the real line such that $G\circ u\in W^{1,p}(\Omega )$ for all $u\in W^{1,p}(\Omega )$. New element in the proof is based on Maz’ya’s capacitary criterion for the imbedding ${W^{1,p}(\Omega )\hookrightarrow L^\infty (\Omega )}$.References
- Jürgen Appell and Petr P. Zabrejko, Nonlinear superposition operators, Cambridge Tracts in Mathematics, vol. 95, Cambridge University Press, Cambridge, 1990. MR 1066204, DOI 10.1017/CBO9780511897450
- B. Bojarski, Remarks on Sobolev imbedding inequalities, Complex analysis, Joensuu 1987, Lecture Notes in Math., vol. 1351, Springer, Berlin, 1988, pp. 52–68. MR 982072, DOI 10.1007/BFb0081242
- Gérard Bourdaud, Le calcul fonctionnel dans les espaces de Sobolev, Invent. Math. 104 (1991), no. 2, 435–446 (French). MR 1098617, DOI 10.1007/BF01245083
- Gérard Bourdaud, The functional calculus in Sobolev spaces, Function spaces, differential operators and nonlinear analysis (Friedrichroda, 1992) Teubner-Texte Math., vol. 133, Teubner, Stuttgart, 1993, pp. 127–142. MR 1242580, DOI 10.1007/978-3-663-11336-2_{2}
- S. Buckley and P. Koskela, Sobolev-Poincaré implies John, Math. Res. Lett. 2 (1995), no. 5, 577–593. MR 1359964, DOI 10.4310/MRL.1995.v2.n5.a5
- V. M. Gol′dshteĭn and Yu. G. Reshetnyak, Quasiconformal mappings and Sobolev spaces, Mathematics and its Applications (Soviet Series), vol. 54, Kluwer Academic Publishers Group, Dordrecht, 1990. Translated and revised from the 1983 Russian original; Translated by O. Korneeva. MR 1136035, DOI 10.1007/978-94-009-1922-8
- Vladimir G. Maz’ja, Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposhnikova. MR 817985, DOI 10.1007/978-3-662-09922-3
- M. Marcus and V. J. Mizel, Absolute continuity on tracks and mappings of Sobolev spaces, Arch. Rational Mech. Anal. 45 (1972), 294–320. MR 338765, DOI 10.1007/BF00251378
- Moshe Marcus and Victor J. Mizel, Every superposition operator mapping one Sobolev space into another is continuous, J. Functional Analysis 33 (1979), no. 2, 217–229. MR 546508, DOI 10.1016/0022-1236(79)90113-7
- Moshe Marcus and Victor J. Mizel, Complete characterization of functions which act, via superposition, on Sobolev spaces, Trans. Amer. Math. Soc. 251 (1979), 187–218. MR 531975, DOI 10.1090/S0002-9947-1979-0531975-1
- Thomas Runst and Winfried Sickel, Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, De Gruyter Series in Nonlinear Analysis and Applications, vol. 3, Walter de Gruyter & Co., Berlin, 1996. MR 1419319, DOI 10.1515/9783110812411
- Winfried Sickel, Superposition of functions in Sobolev spaces of fractional order. A survey, Partial differential equations, Part 1, 2 (Warsaw, 1990) Banach Center Publ., 27, Part 1, vol. 2, Polish Acad. Sci. Inst. Math., Warsaw, 1992, pp. 481–497. MR 1205849
- W. Sickel, Composition operators acting on Sobolev spaces of fractional order—a survey on sufficient and necessary conditions, Function spaces, differential operators and nonlinear analysis (Paseky nad Jizerou, 1995), 159–182, Prometheus, Prague, 1996.
Bibliographic Information
- Denis A. Labutin
- Affiliation: Centre for Mathematics and its Applications, School of Mathematical Sciences, Australian National University, Canberra 0200, ACT, Australia
- Email: labutin@maths.anu.edu.au
- Received by editor(s): August 1, 1998
- Received by editor(s) in revised form: January 22, 1999
- Published electronically: May 11, 2000
- Additional Notes: This work was supported by the Russian Foundation for Basic Research grant 96-01-00243.
- Communicated by: Christopher D. Sogge
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 3399-3403
- MSC (1991): Primary 46E35; Secondary 47H30
- DOI: https://doi.org/10.1090/S0002-9939-00-05421-6
- MathSciNet review: 1676320