Sets of minimal Hausdorff dimension for quasiconformal maps
Author:
Jeremy T. Tyson
Journal:
Proc. Amer. Math. Soc. 128 (2000), 3361-3367
MSC (2000):
Primary 30C65; Secondary 28A78
DOI:
https://doi.org/10.1090/S0002-9939-00-05433-2
Published electronically:
May 18, 2000
MathSciNet review:
1676353
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: For any $1\le \alpha \le n$, there is a compact set $E\subset \mathbb {R}^n$ of (Hausdorff) dimension $\alpha$ whose dimension cannot be lowered by any quasiconformal map $f:\mathbb {R}^n\to \mathbb {R}^n$. We conjecture that no such set exists in the case $\alpha <1$. More generally, we identify a broad class of metric spaces whose Hausdorff dimension is minimal among quasisymmetric images.
- C. J. Bishop. Non-removable sets for quasiconformal and locally bi-Lipschitz mappings in $\mathbf {R}^3$. preprint.
- C. J. Bishop. Quasiconformal mappings which increase dimension. Ann. Acad. Sci. Fenn. Ser. A I Math. to appear.
- Marc Bourdon, Au bord de certains polyèdres hyperboliques, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 1, 119–141 (French, with English and French summaries). MR 1324127
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR 0257325
- F. W. Gehring and J. Väisälä, Hausdorff dimension and quasiconformal mappings, J. London Math. Soc. (2) 6 (1973), 504–512. MR 324028, DOI https://doi.org/10.1112/jlms/s2-6.3.504
- Juha Heinonen and Pekka Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), no. 1, 1–61. MR 1654771, DOI https://doi.org/10.1007/BF02392747
- W. Hurewicz and H. Wallman. Dimension Theory. Princeton University Press, Princeton, N. J., 1941. Princeton Mathematical Series, v. 4.
- Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. MR 1333890
- Pierre Pansu, Dimension conforme et sphère à l’infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), no. 2, 177–212 (French, with English summary). MR 1024425, DOI https://doi.org/10.5186/aasfm.1989.1424
- Pierre Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2) 129 (1989), no. 1, 1–60 (French, with English summary). MR 979599, DOI https://doi.org/10.2307/1971484
- P. Tukia and J. Väisälä, Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), no. 1, 97–114. MR 595180, DOI https://doi.org/10.5186/aasfm.1980.0531
- J. Tyson. Assouad dimension and quasisymmetric mappings. in preparation.
- Jeremy Tyson, Quasiconformality and quasisymmetry in metric measure spaces, Ann. Acad. Sci. Fenn. Math. 23 (1998), no. 2, 525–548. MR 1642158
- Jussi Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971. MR 0454009
- William P. Ziemer, Extremal length and $p$-capacity, Michigan Math. J. 16 (1969), 43–51. MR 247077
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 30C65, 28A78
Retrieve articles in all journals with MSC (2000): 30C65, 28A78
Additional Information
Jeremy T. Tyson
Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
Address at time of publication:
Department of Mathematics, State University of New York at Stony Brook, Stony Brook, New York 11794-3651
MR Author ID:
625886
Email:
jttyson@math.lsa.umich.edu, tyson@math.sunysb.edu
Keywords:
Hausdorff dimension,
quasiconformal maps,
generalized modulus
Received by editor(s):
October 15, 1998
Received by editor(s) in revised form:
January 15, 1999
Published electronically:
May 18, 2000
Additional Notes:
The results of this paper form part of the author’s doctoral dissertation at the University of Michigan. The author was supported by a National Science Foundation Graduate Research Fellowship and a Sloan Doctoral Dissertation Fellowship.
Communicated by:
Albert Baernstein II
Article copyright:
© Copyright 2000
American Mathematical Society