A classification of prime segments in simple artinian rings
HTML articles powered by AMS MathViewer
- by H. H. Brungs, H. Marubayashi and E. Osmanagic
- Proc. Amer. Math. Soc. 128 (2000), 3167-3175
- DOI: https://doi.org/10.1090/S0002-9939-00-05440-X
- Published electronically: May 18, 2000
- PDF | Request permission
Abstract:
Let $A$ be a simple artinian ring. A valuation ring of $A$ is a Bézout order $R$ of $A$ so that $R/J(R)$ is simple artinian, a Goldie prime is a prime ideal $P$ of $R$ so that $R/P$ is Goldie, and a prime segment of $A$ is a pair of neighbouring Goldie primes of $R.$ A prime segment $P_{1}\supset P_{2}$ is archimedean if $K(P_{1})=\{a\in P_{1}\vert P_{1} aP_{1}\subset P_{1}\}$ is equal to $P_{1},$ it is simple if $K(P_{1})=P_{2}$ and it is exceptional if $P_{1}\supset K(P_{1})\supset P_{2}.$ In this last case, $K(P_{1})$ is a prime ideal of $R$ so that $R/K(P_{1})$ is not Goldie. Using the group of divisorial ideals, these results are applied to classify rank one valuation rings according to the structure of their ideal lattices. The exceptional case splits further into infinitely many cases depending on the minimal $n$ so that $K(P_{1})^{n}$ is not divisorial for $n\ge 2.$References
- H.-H. Brungs and J. Gräter, Extensions of valuation rings in central simple algebras, Trans. Amer. Math. Soc. 317 (1990), no. 1, 287–302. MR 946216, DOI 10.1090/S0002-9947-1990-0946216-5
- H. H. Brungs and M. Schröder, Prime segments of skew fields, Canad. J. Math. 47 (1995), no. 6, 1148–1176. MR 1370512, DOI 10.4153/CJM-1995-059-3
- H. H. Brungs and G. Törner, Chain rings and prime ideals, Arch. Math. (Basel) 27 (1976), no. 3, 253–260. MR 419516, DOI 10.1007/BF01224668
- H.H. Brungs, G. Törner, Ideal theory of right cones and associated rings, to appear in J. Algebra.
- N. I. Dubrovin, Noncommutative valuation rings, Trudy Moskov. Mat. Obshch. 45 (1982), 265–280 (Russian). MR 704633
- N. I. Dubrovin, Noncommutative valuation rings in simple finite-dimensional algebras over a field, Mat. Sb. (N.S.) 123(165) (1984), no. 4, 496–509 (Russian). MR 740675
- N.I. Dubrovin, The rational closure of group rings of left orderable groups, Mat. Sbornik 184(7) (1993), 3-48.
- T.V. Dubrovin, N.I. Dubrovin, Cones in groups (Russian), Mat. Sbornik 187(7) (1996), 59-74.
- László Fuchs, Teilweise geordnete algebraische Strukturen, Studia Mathematica/Mathematische Lehrbücher, Band XIX, Vandenhoeck & Ruprecht, Göttingen, 1966 (German). Übersetzt aus dem Englischen von Éva Vas. MR 0204547
- Joachim Gräter, Prime PI-rings in which finitely generated right ideals are principal, Forum Math. 4 (1992), no. 5, 447–463. MR 1176882, DOI 10.1515/form.1992.4.447
- Joachim Gräter, The “Defektsatz” for central simple algebras, Trans. Amer. Math. Soc. 330 (1992), no. 2, 823–843. MR 1034663, DOI 10.1090/S0002-9947-1992-1034663-7
- K. R. Goodearl and R. B. Warfield Jr., An introduction to noncommutative Noetherian rings, London Mathematical Society Student Texts, vol. 16, Cambridge University Press, Cambridge, 1989. MR 1020298
- H. Marubayashi, H. Miyamoto, A. Ueda, Non-Commutative Valuation Rings and Semi-Hereditary Orders, Kluwer Acad. Publ., Dordrecht, 1997.
- Karl Mathiak, Bewertungen nicht kommutativer Körper, J. Algebra 48 (1977), no. 2, 217–235 (German). MR 485810, DOI 10.1016/0021-8693(77)90304-0
- Patrick J. Morandi and Adrian R. Wadsworth, Integral Dubrovin valuation rings, Trans. Amer. Math. Soc. 315 (1989), no. 2, 623–640. MR 986696, DOI 10.1090/S0002-9947-1989-0986696-4
- J. C. Robson, Rings in which finitely generated right ideals are principal, Proc. London Math. Soc. (3) 17 (1967), 617–628. MR 217109, DOI 10.1112/plms/s3-17.4.617
- Adrian R. Wadsworth, Dubrovin valuation rings and Henselization, Math. Ann. 283 (1989), no. 2, 301–328. MR 980600, DOI 10.1007/BF01446437
Bibliographic Information
- H. H. Brungs
- Affiliation: Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
- Email: hbrungs@vega.math.ualberta.ca
- H. Marubayashi
- Affiliation: Department of Mathematics, Naruto University of Education, Naruto, Japan
- Email: marubaya@naruto-u.ac.jp
- E. Osmanagic
- Affiliation: Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
- Email: eosman@vega.math.ualberta.ca
- Received by editor(s): December 29, 1997
- Received by editor(s) in revised form: January 5, 1999
- Published electronically: May 18, 2000
- Additional Notes: The first author is supported in part by NSERC
- Communicated by: Ken Goodearl
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 3167-3175
- MSC (1991): Primary 16W60; Secondary 16L30
- DOI: https://doi.org/10.1090/S0002-9939-00-05440-X
- MathSciNet review: 1690977