Remarks on commuting exponentials in Banach algebras, II
HTML articles powered by AMS MathViewer
- by Christoph Schmoeger
- Proc. Amer. Math. Soc. 128 (2000), 3405-3409
- DOI: https://doi.org/10.1090/S0002-9939-00-05465-4
- Published electronically: May 11, 2000
- PDF | Request permission
Abstract:
Suppose that $a$ and $b$ are elements of a complex unital Banach algebra such that the spectrum of $a$ is $2\pi i$-congruence-free and $e^ae^b = e^be^a$. We show that then $ab-ba$ is the sum of nilpotent elements. If $r(b)$ denotes the spectral radius of $b$, then we show that the additional assumption $r(b)<2 \pi$ implies that \begin{equation*} b (ab-ba)^2 = (ab-ba)^2 b. \end{equation*}References
- Harro Heuser, Funktionalanalysis, 3rd ed., Mathematische Leitfäden. [Mathematical Textbooks], B. G. Teubner, Stuttgart, 1992 (German). Theorie und Anwendung. [Theory and application]. MR 1219535
- Theodore W. Palmer, Banach algebras and the general theory of $^*$-algebras. Vol. I, Encyclopedia of Mathematics and its Applications, vol. 49, Cambridge University Press, Cambridge, 1994. Algebras and Banach algebras. MR 1270014, DOI 10.1017/CBO9781107325777
- Walter Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0365062
- Christoph Schmoeger, Remarks on commuting exponentials in Banach algebras, Proc. Amer. Math. Soc. 127 (1999), no. 5, 1337–1338. MR 1476391, DOI 10.1090/S0002-9939-99-04701-2
- Edgar M. E. Wermuth, Two remarks on matrix exponentials, Linear Algebra Appl. 117 (1989), 127–132. MR 993038, DOI 10.1016/0024-3795(89)90554-5
- Edgar M. E. Wermuth, A remark on commuting operator exponentials, Proc. Amer. Math. Soc. 125 (1997), no. 6, 1685–1688. MR 1353407, DOI 10.1090/S0002-9939-97-03643-5
Bibliographic Information
- Christoph Schmoeger
- Affiliation: Mathematisches Institut I, Universität Karlsruhe, D-76128 Karlsruhe, Germany
- Email: christoph.schmoeger@math.uni-karlsruhe.de
- Received by editor(s): August 28, 1998
- Received by editor(s) in revised form: January 22, 1999
- Published electronically: May 11, 2000
- Communicated by: Dale Alspach
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 3405-3409
- MSC (1991): Primary 46H99
- DOI: https://doi.org/10.1090/S0002-9939-00-05465-4
- MathSciNet review: 1691002