On the number of abelian left symmetric algebras
HTML articles powered by AMS MathViewer
- by Karel Dekimpe and Veerle Ongenae
- Proc. Amer. Math. Soc. 128 (2000), 3191-3200
- DOI: https://doi.org/10.1090/S0002-9939-00-05484-8
- Published electronically: May 11, 2000
- PDF | Request permission
Abstract:
In this paper we prove that there are infinitely many abelian left symmetric algebras in dimensions $\geq 6$. Equivalently this means that there are, up to affine conjugation, infinitely many simply transitive affine actions of $\mathbb R^k$, for $k\geq 6$. This is a result which is usually credited to A.T. Vasquez, but for which there is no proof in the literature.References
- Louis Auslander, Simply transitive groups of affine motions, Amer. J. Math. 99 (1977), no. 4, 809–826. MR 447470, DOI 10.2307/2373867
- Yves Benoist, Une nilvariété non affine, J. Differential Geom. 41 (1995), no. 1, 21–52 (French, with English summary). MR 1316552
- Dietrich Burde, Affine structures on nilmanifolds, Internat. J. Math. 7 (1996), no. 5, 599–616. MR 1411303, DOI 10.1142/S0129167X96000323
- D. Burde and F. Grunewald, Modules for certain Lie algebras of maximal class, J. Pure Appl. Algebra 99 (1995), no. 3, 239–254. MR 1332900, DOI 10.1016/0022-4049(94)00002-Z
- Karel Dekimpe, Paul Igodt, and Veerle Ongenae, The five-dimensional complete left-symmetric algebra structures compatible with an abelian Lie algebra structure, Linear Algebra Appl. 263 (1997), 349–375. MR 1453979, DOI 10.1016/S0024-3795(96)00591-5
- Karel Dekimpe and Wim Malfait, Affine structures on a class of virtually nilpotent groups, Topology Appl. 73 (1996), no. 2, 97–119. MR 1416754, DOI 10.1016/0166-8641(96)00069-7
- Fried, D., Goldman, W., and Hirsch, M. Affine manifolds with nilpotent holonomy. Comment. Math. Helv., 1981, 56 pp. 487–523.
- David Fried and William M. Goldman, Three-dimensional affine crystallographic groups, Adv. in Math. 47 (1983), no. 1, 1–49. MR 689763, DOI 10.1016/0001-8708(83)90053-1
- Jacques Helmstetter, Radical d’une algèbre symétrique à gauche, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 4, viii, 17–35 (French, with English summary). MR 558586
- Hyuk Kim, Complete left-invariant affine structures on nilpotent Lie groups, J. Differential Geom. 24 (1986), no. 3, 373–394. MR 868976
- L. C. Young, On an inequality of Marcel Riesz, Ann. of Math. (2) 40 (1939), 567–574. MR 39, DOI 10.2307/1968941
- John Milnor, On fundamental groups of complete affinely flat manifolds, Advances in Math. 25 (1977), no. 2, 178–187. MR 454886, DOI 10.1016/0001-8708(77)90004-4
- Dan Segal, The structure of complete left-symmetric algebras, Math. Ann. 293 (1992), no. 3, 569–578. MR 1170527, DOI 10.1007/BF01444735
Bibliographic Information
- Karel Dekimpe
- Affiliation: Katholieke Universiteit Leuven Campus Kortrijk, Universitaire Campus, B-8500 Kortrijk, Belgium
- Email: Karel.Dekimpe@kulak.ac.be
- Veerle Ongenae
- Affiliation: Katholieke Universiteit Leuven Campus Kortrijk, Universitaire Campus, B-8500 Kortrijk, Belgium
- Address at time of publication: Department of Pure Mathematics and Computer Algebra, University of Ghent, Galglaan 2, B-9000 Gent, Belgium
- Email: vo@cage.rug.ac.be
- Received by editor(s): January 11, 1999
- Published electronically: May 11, 2000
- Additional Notes: The first author is a Research Fellow of the Fund for Scientific Research – Flanders (Belgium) (F.W.O.)
- Communicated by: Christopher Croke
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 3191-3200
- MSC (2000): Primary 17A30, 17B30; Secondary 57M60, 53B05
- DOI: https://doi.org/10.1090/S0002-9939-00-05484-8
- MathSciNet review: 1695151