Solvability of a finite or infinite system of discontinuous quasimonotone differential equations
HTML articles powered by AMS MathViewer
- by Daniel C. Biles and Eric Schechter
- Proc. Amer. Math. Soc. 128 (2000), 3349-3360
- DOI: https://doi.org/10.1090/S0002-9939-00-05584-2
- Published electronically: May 18, 2000
- PDF | Request permission
Abstract:
This paper proves the existence of solutions to the initial value problem \[ (\mathrm {IVP})\qquad \qquad \left \{\begin {array}{l} x’(t)=f(t,x(t))\qquad \quad (0\le t\le 1), x(0)=0,\end {array} \right .\] where $f:[0,1]\times \mathbb {R}^M\to \mathbb {R}^M$ may be discontinuous but is assumed to satisfy conditions of superposition-measurability, quasimonotonicity, quasisemicontinuity, and integrability. The set $M$ can be arbitrarily large (finite or infinite); our theorem is new even for $\mbox {card}(M)=2$. The proof is based partly on measure-theoretic techniques used in one dimension under slightly stronger hypotheses by Rzymowski and Walachowski. Further generalizations are mentioned at the end of the paper.References
- Marek Balcerzak, Some remarks on sup-measurability, Real Anal. Exchange 17 (1991/92), no. 2, 597–607. MR 1171401, DOI 10.2307/44153753
- M. Balcerzak and K. Ciesielski, On the sup-measurable functions problem, Real Anal. Exchange 23 (2) (1997–98), 787–797.
- Daniel C. Biles, Existence of solutions for discontinuous differential equations, Differential Integral Equations 8 (1995), no. 6, 1525–1532. MR 1329854
- D. C. Biles and P. A. Binding, On Carathéodory’s conditions for the initial value problem, Proc. Amer. Math. Soc. 125 (1997), no. 5, 1371–1376. MR 1403114, DOI 10.1090/S0002-9939-97-03942-7
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- Constantin Carathéodory, Vorlesungen über reelle Funktionen, Chelsea Publishing Co., New York, 1968 (German). Third (corrected) edition. MR 0225940
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- Gerald S. Goodman, Subfunctions and intitial-value problem for differential equations satisfying Carathéodory’s hypotheses, J. Differential Equations 7 (1970), 232–242. MR 255880, DOI 10.1016/0022-0396(70)90108-7
- S. Heikkilä and V. Lakshmikantham, On first order differential equations in ordered Banach spaces, Inequalities and applications, World Sci. Ser. Appl. Anal., vol. 3, World Sci. Publ., River Edge, NJ, 1994, pp. 293–301. MR 1299563
- E. Kamke, Zur Theorie der Systeme gewöhnlicher Differentialgleichungen II, Acta Mathematica 58 (1932), 57–85.
- A. B. Kharazishvili, Sup-measurable and weakly sup-measurable mappings in the theory of ordinary differential equations, J. Appl. Anal. 3 (1997), no. 2, 211–223. MR 1619549, DOI 10.1515/JAA.1997.211
- M. A. Krasnosel′skiĭ, P. P. Zabreĭko, E. I. Pustyl′nik, and P. E. Sobolevskiĭ, Integral operators in spaces of summable functions, Monographs and Textbooks on Mechanics of Solids and Fluids, Mechanics: Analysis, Noordhoff International Publishing, Leiden, 1976. Translated from the Russian by T. Ando. MR 0385645, DOI 10.1007/978-94-010-1542-4
- Roland Lemmert, Existenzsätze für gewöhnliche Differentialgleichungen in geordneten Banachräumen, Funkcial. Ekvac. 32 (1989), no. 2, 243–249 (German). MR 1019432
- Max Müller, Über das Fundamentaltheorem in der Theorie der gewöhnlichen Differentialgleichungen, Mathematische Zeitschrift 26 (1926), 619–645.
- G. Peano, Sull’inegrabilitá delle equazione differenziali di primo ordine, Atti della Accademia delle Scienze di Torino 21 (1885–1886), 677–685.
- O. Perron, Ein neuer Existenzbeweis für die Integrale der Differentialgleichung $y’=f(x,y)$, Math. Annl. 76 (1914), 471–484.
- Irene Redheffer and Peter Volkmann, Ein Fixpunktsatz für quasimonoton wachsende Funktionen, Arch. Math. (Basel) 70 (1998), no. 4, 307–312 (German, with English summary). MR 1611184, DOI 10.1007/s000130050200
- R. M. Redheffer and W. Walter, Flow-invariant sets and differential inequalities in normed spaces, Applicable Anal. 5 (1975), no. 2, 149–161. MR 470401, DOI 10.1080/00036817508839117
- Witold Rzymowski and Dariusz Walachowski, One-dimensional differential equations under weak assumptions, J. Math. Anal. Appl. 198 (1996), no. 3, 657–670. MR 1377818, DOI 10.1006/jmaa.1996.0106
- Eric Schechter, A survey of local existence theories for abstract nonlinear initial value problems, Nonlinear semigroups, partial differential equations and attractors (Washington, DC, 1987) Lecture Notes in Math., vol. 1394, Springer, Berlin, 1989, pp. 136–184. MR 1021021, DOI 10.1007/BFb0086759
- Eric Schechter, Handbook of analysis and its foundations, Academic Press, Inc., San Diego, CA, 1997. MR 1417259
- Alice Chaljub-Simon, Roland Lemmert, Sabina Schmidt, and Peter Volkmann, Gewöhnliche Differentialgleichungen mit quasimonoton wachsenden rechten Seiten in geordneten Banachräumen, General inequalities, 6 (Oberwolfach, 1990) Internat. Ser. Numer. Math., vol. 103, Birkhäuser, Basel, 1992, pp. 307–320 (German, with English summary). MR 1213014, DOI 10.1007/978-3-0348-7565-3_{2}4
- Alice Simon and Peter Volkmann, Remark on quasimonotonicity, Inequalities and applications, World Sci. Ser. Appl. Anal., vol. 3, World Sci. Publ., River Edge, NJ, 1994, pp. 543–548. MR 1299583
- J. W. S̆ragin, Conditions for measurability of superpositions (Russian), Dokl. Akad. Nauk SSSR 197 (1971), 295–298; translated in Soviet Math. Dokl. 12 (1971), 465–470.
- Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783–787. MR 10, DOI 10.2307/2371336
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712–730. MR 12, DOI 10.2307/1968951
- Peter Volkmann, Gewöhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in topologischen Vektorräumen, Math. Z. 127 (1972), 157–164 (German). MR 308547, DOI 10.1007/BF01112607
- Wolfgang Walter, Differential and integral inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 55, Springer-Verlag, New York-Berlin, 1970. Translated from the German by Lisa Rosenblatt and Lawrence Shampine. MR 0271508, DOI 10.1007/978-3-642-86405-6
- W. Walter, Ordinary Differential Equations, Graduate Texts in Mathematics 182, Springer, New York, 1998.
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712–730. MR 12, DOI 10.2307/1968951
Bibliographic Information
- Daniel C. Biles
- Affiliation: Department of Mathematics, Western Kentucky University, Bowling Green, Kentucky 42101-3576
- Email: Daniel.Biles@wku.edu
- Eric Schechter
- Affiliation: Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240-0001
- Email: schectex@math.vanderbilt.edu
- Received by editor(s): January 13, 1999
- Published electronically: May 18, 2000
- Communicated by: Hal L. Smith
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 3349-3360
- MSC (2000): Primary 34A12, 34A40; Secondary 45G15
- DOI: https://doi.org/10.1090/S0002-9939-00-05584-2
- MathSciNet review: 1707137