PROJECTIVE BOUNDEDNESS AND CONVOLUTION
OF FRÉCHET MEASURES

R. BLEI AND J. CAGGIANO

(Communicated by Christopher D. Sogge)

Abstract. Fréchet measures of order \(n \) (\(F_n \)-measures) are the measure-theoretic analogues of bounded \(n \)-linear forms on products of \(C_0(K) \) spaces. In an LCA setting, convolution of \(F_2 \)-measures is always defined, while there exist \(F_3 \)-measures whose convolution cannot be defined. In a three-dimensional setting, we demonstrate the existence of an \(F_2 \)-measure which cannot be convolved with arbitrary \(F_3 \)-measures.

Let \((X_1, A_1), \ldots, (X_n, A_n)\) be measurable spaces. A scalar-valued function \(\mu \) on \(A_1 \times \cdots \times A_n \) is a Fréchet measure (an \(F_n \)-measure) if, when any \(n-1 \) coordinates are fixed, \(\mu \) is a measure in the remaining coordinate. When the measure spaces are arbitrary or understood, we write \(F_n \) for \(F_n(A_1, \ldots, A_n) \).

Let \(X_1; \ldots, X_n \) be locally compact abelian groups with corresponding dual groups \(\hat{X}_1; \ldots, \hat{X}_n \). If \(A_1; \ldots, A_n \) are the respective Borel fields of \(X_1; \ldots, X_n \) and \(\mu \in F_n \), then the Fourier-Stieltjes transform of \(\mu \) is given by

\[
\hat{\mu}(\gamma_1, \ldots, \gamma_n) = \int \gamma_1 \otimes \cdots \otimes \gamma_n d\mu, \quad (\gamma_1, \ldots, \gamma_n) \in \hat{X}_1 \times \cdots \times \hat{X}_n.
\]

(The integral above is defined iteratively.) We use the multi-linear Riesz Representation Theorem \([B1] \) to identify \(F_n(A_1, \ldots, A_n) \) with the dual space of

\[
C_0(X_1) \otimes \cdots \otimes C_0(X_n) = V_n(X_1, \ldots, X_n),
\]

and thus extend the action to arbitrary bounded functions by integration. See \([B3] \) for details. It is natural to consider the feasibility of convolution of \(F_n \)-measures.

Definition 1. Let \(X_1; \ldots, X_n \) be LCA groups with Borel fields \(A_1; \ldots, A_n \). \(F_n \)-measures \(\mu \) and \(\nu \) are **convolvable** if \(\hat{\mu} \hat{\nu} = \lambda \) for some \(\lambda \in F_n \); \(\lambda \) is then denoted by \(\mu \ast \nu \) or \(\nu \ast \mu \). We say \(\mu \in F_n \) is a **convolver** if \(\mu \ast \nu \) exists for all \(\nu \in F_n \).

The case \(n = 1 \) in Definition 1 is classical; every \(F_1 \)-measure is a convolver. It is shown in \([GS1] \) that in a two-dimensional setting every \(F_2 \)-measure is a convolver, while in \([GS2] \) it is shown that there exist non-convolvers in \(F_3 \). In general, convolvability is related to **projective boundedness**, a property conveying a Grothendieck-type inequality. In the definition which follows, \(\mathcal{L}^\infty(X_j) \) denotes the space of bounded functions on \(X_j \).

Received by the editors September 1, 1998 and, in revised form, January 28, 1999.
1991 Mathematics Subject Classification. Primary 43A05, 46A32.
The first author was supported by an NSA grant.

©2000 American Mathematical Society

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Definition 2 \([\text{B3}]\). Let \((\mathcal{X}_1, \mathcal{A}_1), \ldots, (\mathcal{X}_n, \mathcal{A}_n)\) be measurable spaces, and let \(\mu \in \mathcal{F}_n(\mathcal{X}_1, \ldots, \mathcal{X}_n)\). For \(f_j \in L^\infty(\mathcal{X}_j)\), \(j = 1, \ldots, n\), define
\[
\phi_\mu(f_1, \ldots, f_n) = \int f_1 \otimes \cdots \otimes f_n d\mu.
\]
We say that \(\mu\) is projectively bounded if
\[
\|\mu\|_{pb} := \sup\{\|\phi_\mu\|_{\mathcal{V}_n(\mathcal{E}_1, \ldots, \mathcal{E}_n)} : E_j \subset Ball(L^\infty(\mathcal{X}_j)), |E_j| < \infty, j = 1, \ldots, n\} < \infty;
\]
the class of projectively bounded \(\mathcal{F}_n\)-measures on \(\mathcal{X}_1 \times \cdots \times \mathcal{X}_n\) is denoted by \(\mathcal{PBF}_n = \mathcal{PBF}_n(\mathcal{X}_1, \ldots, \mathcal{X}_n)\).

Let \(\mathcal{X}_1, \ldots, \mathcal{X}_n, \mathcal{Y}_1, \ldots, \mathcal{Y}_n\) be locally compact Hausdorff spaces with respective Borel fields \(\mathcal{A}_1, \ldots, \mathcal{A}_n, \mathcal{B}_1, \ldots, \mathcal{B}_n\). For
\[
f \in \mathcal{V}_n(\mathcal{X}_1 \times \mathcal{Y}_1, \ldots, \mathcal{X}_n \times \mathcal{Y}_n) \quad \text{and} \quad \mu \in \mathcal{F}_n(\mathcal{A}_1, \ldots, \mathcal{A}_n),
\]
define a function \(\eta_{f, \mu}\) on \(\mathcal{Y}_1 \times \cdots \times \mathcal{Y}_n\) by
\[
\eta_{f, \mu}(y_1, \ldots, y_n) = \int f(x_1, y_1, \ldots, x_n, y_n) d\mu(d x_1, \ldots, d x_n) \quad (y_j \in \mathcal{Y}_j).
\]

Definition 3. Let \(\mu \in \mathcal{F}_n(\mathcal{A}_1, \ldots, \mathcal{A}_n)\).

1. (\(\tau\)-projective boundedness) Let \(\mathcal{Y}_1, \ldots, \mathcal{Y}_n\) be locally compact Hausdorff spaces, and define
\[
\|\mu\|_{pb_{\tau,n}} := \sup\{\|\eta_{f, \mu}\|_{\mathcal{V}_n(\mathcal{Y}_1, \ldots, \mathcal{Y}_n)} : \|f\|_{\mathcal{V}_n(\mathcal{X}_1 \times \mathcal{Y}_1, \ldots, \mathcal{X}_n \times \mathcal{Y}_n)} \leq 1\}.
\]
We say that \(\mu\) is \(\tau\)-projectively bounded if \(\|\mu\|_{pb_{\tau,n}} < \infty\); the class of \(\tau\)-projectively bounded \(\mathcal{F}_n\)-measures on \(\mathcal{X}_1 \times \cdots \times \mathcal{X}_n\) is denoted by \(\mathcal{PBF}_\tau,n = \mathcal{PBF}_\tau,n(\mathcal{A}_1, \ldots, \mathcal{A}_n)\).

2. (\(g\)-projective boundedness) Let \(\mathcal{X}_1, \ldots, \mathcal{X}_n\) be LCA groups. For \(\mu \in \mathcal{F}_n(\mathcal{A}_1, \ldots, \mathcal{A}_n)\) and elementary tensors \(f = f_1 \otimes \cdots \otimes f_n \in \mathcal{V}_n(\mathcal{X}_1, \ldots, \mathcal{X}_n)\), let
\[
\Psi_{f, \mu}(y_1, \ldots, y_n) = \int f(x_1 + y_1, \ldots, x_n + y_n) d\mu(d x_1, \ldots, d x_n) \quad (y_j \in \mathcal{X}_j),
\]
and define
\[
\|\mu\|_{pb_{g,n}} := \sup\{\|\Psi_{f, \mu}\|_{\mathcal{V}_n(\mathcal{X}_1, \ldots, \mathcal{X}_n)} : \|f\|_{\mathcal{V}_n} = \prod_j \|f_j\|_\infty \leq 1\}.
\]
We say that \(\mu\) is \(g\)-projectively bounded if \(\|\mu\|_{pb_{g,n}} < \infty\); the class of \(g\)-projectively bounded \(\mathcal{F}_n\)-measures on \(\mathcal{X}_1 \times \cdots \times \mathcal{X}_n\) is denoted by \(\mathcal{PBF}_{g,n} = \mathcal{PBF}_{g,n}(\mathcal{A}_1, \ldots, \mathcal{A}_n)\).

The symbols \(\tau\) and \(g\) in Definition 3 denote, respectively, topological and group-topological projective boundedness. It is straightforward to check that \(\mathcal{PBF}_n, \mathcal{PBF}_{g,n}\), and \(\mathcal{PBF}_{\tau,n}\) are Banach spaces. To verify that every \(\mu \in \mathcal{PBF}_{g,n}\) is a convolver, let \(\nu \in \mathcal{F}_n(\mathcal{X}_1, \ldots, \mathcal{X}_n)\) be arbitrary and consider a linear form \(\Lambda : \mathcal{V}_n(\mathcal{X}_1, \ldots, \mathcal{X}_n) \to \mathbb{C}\) given by
\[
\Lambda(f) = \int \left(\int f(x_1 + y_1, \ldots, x_n + y_n) d\mu(d x_1, \ldots, d x_n)\right) \nu(dy_1, \ldots, dy_n).
\]
Then Λ is bounded, and the \mathcal{F}_n-measure λ representing this linear action satisfies $\lambda = \mu \nu$. Each $\mu \in \mathcal{PBF}_{g,n}$ can be identified with a bounded linear operator $T_\mu : \mathcal{F}_n \to \mathcal{F}_n$ given by $T_\mu(\nu) = \mu \ast \nu$. By a routine argument, $\mu \in \mathcal{PBF}_{g,n}$ if and only if the domain of T_μ is \mathcal{F}_n, and thus $\mathcal{PBF}_{g,n}$ is precisely the space of convolvers.

For $\mu \in \mathcal{F}_n$, let $\mathcal{D}(\mu) = \{ \alpha \in \mathcal{F}_n : \mu \ast \alpha \text{ exists} \}$, i.e., $\mathcal{D}(\mu)$ is the domain of T_μ. Results in [GS1] and [GS2] state that in a two-dimensional setting $\mathcal{D}(\mu) = \mathcal{F}_2$ for all $\mu \in \mathcal{F}_2$, and there exist $\mu \in \mathcal{F}_3$ with $\mathcal{D}(\mu) \subsetneq \mathcal{F}_3$. Thus it is natural to ask: for $\mu \in \mathcal{F}_2(\sigma(A_1 \times A_2), A_3)$, is $\mathcal{D}(\mu) = \mathcal{F}_3(A_1, A_2, A_3)$? We show that the answer is no.

Let $\mathcal{S}(A_j)$ be the space of A_j-simple functions on X_j, equipped with the uniform norm. $\mathcal{V}_n(A_1, \ldots, A_n)$ will denote the completion of $\mathcal{S}(A_1) \otimes \cdots \otimes \mathcal{S}(A_n)$ with respect to the projective tensor norm.

Proposition 4. $\mathcal{PBF}_n \subset \mathcal{PBF}_{\tau,n} \subset \mathcal{PBF}_{g,n}$.

Proof. The second inclusion is immediate from the definitions. Let X_1, \ldots, X_n be compact spaces. A theorem of Saeki [S] states that

$$C(X_1 \times \cdots \times X_n) \cap \mathcal{V}_n(A_1, \ldots, A_n) = \mathcal{V}_n(X_1, \ldots, X_n).$$

We show that

$$\|\eta_{f,\mu}\|_{\mathcal{V}_n(Y_1, \ldots, Y_n)} \leq \|f\|_{\mathcal{V}_n} \|\mu\|_{\mathcal{PBF}_n}, \quad f \in \mathcal{V}_n(X_1 \times Y_1, \ldots, X_n \times Y_n).$$

(See (1) for the definition of $\eta_{f,\mu}$.) Let $g = g_1 \otimes \cdots \otimes g_n$ be an elementary tensor in $C_c(X_1 \times Y_1, \ldots, X_n \times Y_n)$. (The subscript c denotes compact support.) Then $\eta_{g,\mu} \in C_c(Y_1 \times \cdots \times Y_n)$. For locally compact spaces X and Y, $\mathcal{V}_n(X, Y)$ is uniformly dense in $C_0(X \times Y)$, and thus for $k = 1, \ldots, n$ there exist sequences $\{\rho_j\} \subset \mathcal{S}(A_k) \otimes \mathcal{S}(B_k)$ with $\lim_{j \to \infty} \rho_j = g_k$ in the uniform norm. Let $\theta_j = \rho_{j1} \otimes \cdots \otimes \rho_{jn}$. Then $\lim_j \eta_{\theta_j,\mu} = \eta_{g,\mu}$ (uniform limit), and $\{\eta_{\theta_j,\mu}\}$ is a $\mathcal{V}_n(B_1, \ldots, B_n)$-Cauchy sequence satisfying

$$\|\eta_{\theta_j,\mu}\|_{\mathcal{V}_n(B_1, \ldots, B_n)} \leq \|\rho_{j1}\| \cdots \|\rho_{jn}\| \|\mu\|_{\mathcal{PBF}_n}.$$

By (1), $\eta_{g,\mu} \in \mathcal{V}_n(Y_1, \ldots, Y_n)$. Let $\epsilon > 0$, and choose $f \in \mathcal{V}_n(X_1 \times Y_1, \ldots, X_n \times Y_n)$. Without loss of generality, we can take f to be compactly supported. We represent

$$f = \sum_k g_k,$$

where $g_k = g_{1k} \otimes \cdots \otimes g_{nk}$, and

$$\|f\|_{\mathcal{V}_n} \leq (1 + \epsilon) \sum_k \|g_{1k}\| \cdots \|g_{nk}\|,$$

with each $g_k \in C_c(X_1 \times Y_1) \otimes \cdots \otimes C_c(X_n \times Y_n)$. Then $\eta_{f,\mu} = \sum_k \eta_{g_k,\mu}$, and (2) follows.

We do not know which of the inclusions in Proposition 4 are proper. (\mathcal{PBF}_n is properly contained in $\mathcal{PBF}_{g,n}$, as shown by the ‘fractional’ forms in [B3].)

We now show that in a three-dimensional setting, an \mathcal{F}_2-measure need not be a convolver.

Lemma 5. Let X_1, X_2, and X_3 be infinite locally compact abelian groups with respective Borel fields A_1, A_2, A_3. For every $K > 0$ there exists a discrete measure μ on $X_1 \times X_2 \times X_3$ satisfying $\|\mu\|_{\mathcal{F}_2(A_1 \times A_2, A_3)} \leq 1$ and $\|\mu\|_{\mathcal{PBF}_{g,3}(A_1, A_2, A_3)} \geq K$.
Proof. Let \mathbb{Z}_n be the group of integers under addition modulo n, and let $\hat{\mathbb{Z}}_n$ be its dual. Let $\mu_n : C(\mathbb{Z}_n \times \mathbb{Z}_n) \to \mathbb{C}$ be given by

$$\mu_n(f, h) = \sum_{m \in \mathbb{Z}_n} \frac{f(m, m)}{\sqrt{n}} h(m).$$

We show that $\|\mu_n\|_{\mathcal{F}_2(\hat{\mathbb{Z}}_n \times \hat{\mathbb{Z}}_n, \mathbb{Z}_n)} \leq 1$ and $\|\hat{\mu}_n\|_{\mathcal{V}_3(\mathbb{Z}_n \times \mathbb{Z}_n, \mathbb{Z}_n)} \to \infty$ as $n \to \infty$. (For convenience, we write $\mathcal{F}_2(\hat{\mathbb{Z}}_n \times \hat{\mathbb{Z}}_n)$ for $\mathcal{F}_2(\hat{\mathbb{Z}}_n \times \hat{\mathbb{Z}}_n, 2\mathbb{Z}_n)$.) Clearly, $\|\mu_n\|_{\mathcal{F}_2} \leq 1$ (by Cauchy-Schwarz). μ_n is also an element of $\mathcal{F}_3(\hat{\mathbb{Z}}_n, \mathbb{Z}_n, \mathbb{Z}_n)$:

$$\mu_n(f, g, h) = \sum_{m \in \mathbb{Z}_n} \frac{f(m)g(m)}{\sqrt{n}} h(m).$$

Then

$$\hat{\mu}_n(j, k, l) = \sum_{m \in \mathbb{Z}_n} e^{-\frac{2\pi i m j}{n}} e^{-\frac{2\pi i m k}{n}} \sum_{s \in \mathbb{Z}_n} e^{-\frac{2\pi i (j+m) s}{n}} = \frac{1}{\sqrt{n}} e^{2\pi ij/n} e^{2\pi ik/n}.$$

Define

$$\Phi_n(j, k, l) = \frac{1}{n^2} e^{-2\pi ij/n} e^{-2\pi ik/n}.$$

Let s, t, u be elements in the unit ball of $\ell^\infty(\mathbb{Z}_n)$. Then

$$|\sum_{j, k, l} \Phi_n(j, k, l)s(j)t(k)u(l)|$$

$$= \frac{1}{n^2} \sum_l u(l) \sum_j s(j) e^{-2\pi ij/n} \sum_k t(k) e^{-2\pi ik/n}$$

$$= |\sum_l u(l)\hat{s}(l)\hat{t}(l)| \leq \|u\|_\infty \|\hat{s}\|_2 \|\hat{t}\|_2 \leq \|s\|_\infty \|t\|_\infty \leq 1.$$

Thus, $\|\Phi_n\|_{\mathcal{F}_3} \leq 1$. However,

$$|\sum_{j, k, l} \hat{\mu}_n(j, k, l)\Phi_n(j, k, l)| = \sqrt{n}.$$

Therefore, by the duality $(\mathcal{V}_3)^* = \mathcal{F}_3$,

$$\sqrt{n} \leq \|\hat{\mu}_n\|_{\mathcal{V}_3} \leq \|\mu_n\|_{\mathcal{F}_3}.$$

Let $[N] = \{1, \ldots, N\}$. Given $K > 0$, there exist N and $\mu \in \mathcal{F}_2([N]^2, [N])$ with $\|\mu\|_{\mathcal{F}_2} \leq 1$ and $\|\mu\|_{\mathcal{F}_3} > K$. If $\mu = \{\mu_{xyz} : (x, y, z) \in [N]^3\}$, there exist arrays a, b, c in the unit ball of $\ell^\infty([N]^3)$ such that

$$\|\eta_{a, b, c, \mu}\|_{\mathcal{V}_3([N], [N], [N])} > K,$$

where

$$\eta_{a, b, c, \mu}(i, j, k) = \sum_{(x,y,z)\in[N]^3} \mu_{xyz} a_x b_{yz} c_z, \quad (i, j, k) \in [N]^3.$$
Let F_m and G_m be disjoint mutually independent subsets of X_m of cardinality N given by

$$F_m = \{s_{jm} : j \in [N]\}, \quad G_m = \{t_{jm} : j \in [N]\}, \quad m = 1,2,3.$$

(Disjoint subsets A and B of an abelian group are mutually independent if given elements (a_1,b_1) and (a_2,b_2) of $A \times B$, the relation $a_1 + b_1 = a_2 + b_2$ implies that $a_1 = a_2$ and $b_1 = b_2$.) Define a measure $\tilde{\mu}$ on $X_1 \times X_2 \times X_3$ by

$$\tilde{\mu} = \sum_{(x,y,z) \in [N]^3} \mu_{xyz} \delta_{s_{x1}} \otimes \delta_{s_{y2}} \otimes \delta_{s_{z3}},$$

and observe that $\|\tilde{\mu}\|_{\mathcal{F}_2(\sigma(A_1 \times A_2),A_3)} \leq 1$. Therefore, by the independence of F_m and G_m, we can find $f \in C_0(X_1)$, $g \in C_0(X_2)$, and $h \in C_0(X_3)$ with

$$f(s_{i1} + t_{j1}) = a_{ij}, \quad g(s_{i2} + t_{j2}) = b_{ij}, \quad h(s_{i3} + t_{j3}) = c_{ij},$$

so that

$$\eta_{a,b,c;\mu}(i,j,k) = \Psi_{f \otimes g \otimes h;\mu}(t_{i1},t_{j2},t_{k3}), \quad (i,j,k) \in [N]^3.$$

(Refer to \cite{B3} and \cite{B2} for definitions of η and Ψ.) Thus $\|\Psi_{f \otimes g \otimes h;\mu}\|_{\mathcal{V}_3} \geq K$, and hence $\|\tilde{\mu}\|_{\mathcal{P}_{b,\nu}} \geq K$. \hfill \Box

Corollary 6. If the underlying σ-algebras $A_1, A_2,$ and A_3 are infinite, there exists $\mu \in \mathcal{F}_2(\sigma(A_1 \times A_2),A_3)$ which is not a convolver in \mathcal{F}_3.

Two further questions

1. It is shown in \cite{B3} that scalar measures are projectively bounded. Hence, by Proposition 2 all scalar measures are convolvers. An \mathcal{F}_3-measure μ is an \mathcal{F}_2-measure if, when any one coordinate is fixed, μ extends to a scalar measure in the remaining two coordinates. (See \cite{B2} for details.) We have the proper containments $\mathcal{F}_1 \subseteq \mathcal{F}_2 \subseteq \mathcal{F}_3$. We do not know whether all \mathcal{F}_2-measures are convolvers.

2. Let X_1, \ldots, X_n be LCA groups. It is shown in \cite{ZS} that the space of completely bounded n-linear forms on $C_0(X_1) \times \cdots \times C_0(X_n)$ has a natural Banach *-algebra structure extending that of \mathcal{F}_1 on $X_1 \times \cdots \times X_n$. We do not know whether all completely bounded forms are convolvers, or if all convolvers are completely bounded.

References

Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269
E-mail address: Blei@uconnvm.uconn.edu

Department of Mathematics & Computer Science, Arkansas State University, Box 70, State University, Arkansas 72467
E-mail address: Caggiano@csu.astate.edu