Embedding obstructions and 4-dimensional thickenings of 2-complexes
HTML articles powered by AMS MathViewer
- by Vyacheslav S. Krushkal
- Proc. Amer. Math. Soc. 128 (2000), 3683-3691
- DOI: https://doi.org/10.1090/S0002-9939-00-05458-7
- Published electronically: May 18, 2000
- PDF | Request permission
Abstract:
The vanishing of Van Kampen’s obstruction is known to be necessary and sufficient for embeddability of a simplicial $n$-complex into ${\mathbb {R}}^{2n}$ for $n\neq 2$, and it was recently shown to be incomplete for $n=2$. We use algebraic-topological invariants of four-manifolds with boundary to introduce a sequence of higher embedding obstructions for a class of $2$-complexes in ${\mathbb {R}}^4$.References
- J. H. Conway and C. McA. Gordon, Knots and links in spatial graphs, J. Graph Theory 7 (1983), no. 4, 445–453. MR 722061, DOI 10.1002/jgt.3190070410
- Edward Fadell and Lee Neuwirth, Configuration spaces, Math. Scand. 10 (1962), 111–118. MR 141126, DOI 10.7146/math.scand.a-10517
- Michael H. Freedman, A geometric reformulation of $4$-dimensional surgery, Topology Appl. 24 (1986), no. 1-3, 133–141. Special volume in honor of R. H. Bing (1914–1986). MR 872483, DOI 10.1016/0166-8641(86)90054-4
- Michael H. Freedman, Vyacheslav S. Krushkal, and Peter Teichner, van Kampen’s embedding obstruction is incomplete for $2$-complexes in $\textbf {R}^4$, Math. Res. Lett. 1 (1994), no. 2, 167–176. MR 1266755, DOI 10.4310/MRL.1994.v1.n2.a4
- André Haefliger, Plongements différentiables dans le domaine stable, Comment. Math. Helv. 37 (1962/63), 155–176 (French). MR 157391, DOI 10.1007/BF02566970
- David Kraines, Massey higher products, Trans. Amer. Math. Soc. 124 (1966), 431–449. MR 202136, DOI 10.1090/S0002-9947-1966-0202136-1
- C. Kuratowski, Sur le problème des courbes gauches en topologie, Fund. Math. 15 (1930), 271-283.
- H. Sachs, On spatial representations of finite graphs, Finite and infinite sets, Vol. I, II (Eger, 1981) Colloq. Math. Soc. János Bolyai, vol. 37, North-Holland, Amsterdam, 1984, pp. 649–662. MR 818267
- J. Segal, A. Skopenkov, and S. Spież, Embeddings of polyhedra in $\mathbf R^m$ and the deleted product obstruction, Topology Appl. 85 (1998), no. 1-3, 335–344. 8th Prague Topological Symposium on General Topology and Its Relations to Modern Analysis and Algebra (1996). MR 1617472, DOI 10.1016/S0166-8641(97)00157-0
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- V. G. Turaev, The Milnor invariants and Massey products, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 66 (1976), 189–203, 209–210 (Russian, with English summary). Studies in topology, II. MR 0451251
- E. R. Van Kampen, Komplexe in euklidischen Räumen, Abh. Math. Sem. Univ. Hamburg, vol.9 (1933), pp. 72-78 and 152-153.
- W. T. Wu, A theory of imbedding, immersion, and isotopy of polytopes in a euclidean space, Science Press, Peking 1965.
Bibliographic Information
- Vyacheslav S. Krushkal
- Affiliation: Department of Mathematics, Yale University, New Haven, Connecticut 06520
- MR Author ID: 348038
- Email: krushkal@math.yale.edu
- Received by editor(s): May 20, 1998
- Received by editor(s) in revised form: January 29, 1999
- Published electronically: May 18, 2000
- Communicated by: Ronald A. Fintushel
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 3683-3691
- MSC (1991): Primary 57M20, 57Q35, 55S30, 57M25
- DOI: https://doi.org/10.1090/S0002-9939-00-05458-7
- MathSciNet review: 1690995