Between the Lindelöf property and countable tightness
HTML articles powered by AMS MathViewer
- by R. Frankiewicz, G. Plebanek and C. Ryll-Nardzewski
- Proc. Amer. Math. Soc. 129 (2001), 97-103
- DOI: https://doi.org/10.1090/S0002-9939-00-05489-7
- Published electronically: June 21, 2000
- PDF | Request permission
Abstract:
We consider a class of compact spaces $K$ for which the space $P(K)$ of probability Radon measures on $K$ has countable tightness in the $weak^*$ topology. We show that that class contains those compact zero-dimensional spaces for which $C(K)$ is weakly Lindelöf, and, under MA + $\neg$CH, all compact spaces $K$ with $C(K)$ having property (C) of Corson.References
- A. V. Arkhangel′skiĭ, Topological function spaces, Mathematics and its Applications (Soviet Series), vol. 78, Kluwer Academic Publishers Group, Dordrecht, 1992. Translated from the Russian by R. A. M. Hoksbergen. MR 1144519, DOI 10.1007/978-94-011-2598-7
- A.V. Arhangel’skiĭ, $C_{p}$-theory, in: Recent progres in general topology, M. Husek, J. van Mill (edts), North Holland (1992).
- A.V. Arhangel’skiĭ, Szeptycki, Tightness in compact subspaces of $C_{p}$ spaces, Houston J. Math. 23 (1997), 87–93.
- B. Cascales, G. Manjabacas, and G. Vera, Fragmentability and compactness in $C(K)$-spaces, Studia Math. 131 (1998), no. 1, 73–87. MR 1628664, DOI 10.4064/sm-131-1-73-87
- H. H. Corson, The weak topology of a Banach space, Trans. Amer. Math. Soc. 101 (1961), 1–15. MR 132375, DOI 10.1090/S0002-9947-1961-0132375-5
- G. A. Edgar, Measurability in a Banach space. II, Indiana Univ. Math. J. 28 (1979), no. 4, 559–579. MR 542944, DOI 10.1512/iumj.1979.28.28039
- Ryszard Engelking, Topologia ogólna, Biblioteka Matematyczna [Mathematics Library], vol. 47, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1975 (Polish). MR 0500779
- D.H. Fremlin, Measure algebras, in: Handbook of Boolean algebras, J.D. Monk (ed.), North–Holand 1989, Vol. III, Chap. 22.
- D. H. Fremlin, On compact spaces carrying Radon measures of uncountable Maharam type, Fund. Math. 154 (1997), no. 3, 295–304. MR 1475869, DOI 10.4064/fm-154-3-295-304
- Richard Haydon, On dual $L^{1}$-spaces and injective bidual Banach spaces, Israel J. Math. 31 (1978), no. 2, 142–152. MR 516250, DOI 10.1007/BF02760545
- Kenneth Kunen, A compact $L$-space under CH, Topology Appl. 12 (1981), no. 3, 283–287. MR 623736, DOI 10.1016/0166-8641(81)90006-7
- Kenneth Kunen and Jan van Mill, Measures on Corson compact spaces, Fund. Math. 147 (1995), no. 1, 61–72. MR 1330107
- José Orihuela, On weakly Lindelöf Banach spaces, Progress in functional analysis (Peñíscola, 1990) North-Holland Math. Stud., vol. 170, North-Holland, Amsterdam, 1992, pp. 279–291. MR 1150753, DOI 10.1016/S0304-0208(08)70326-8
- Grzegorz Plebanek, On some properties of Banach spaces of continuous functions, Séminaire d’Initiation à l’Analyse, Publ. Math. Univ. Pierre et Marie Curie, vol. 107, Univ. Paris VI, Paris, [1992], pp. Exp. No. 20, 9. MR 1268463
- Grzegorz Plebanek, On Mazur property and realcompactness in $C(K)$, Topology, measures, and fractals (Warnemünde, 1991) Math. Res., vol. 66, Akademie-Verlag, Berlin, 1992, pp. 27–36. MR 1226275
- Grzegorz Plebanek, Nonseparable Radon measures and small compact spaces, Fund. Math. 153 (1997), no. 1, 25–40. MR 1450994, DOI 10.4064/fm-153-1-25-40
- Franz Rádl, Über die Teilbarkeitsbedingungen bei den gewöhnlichen Differential polynomen, Math. Z. 45 (1939), 429–446 (German). MR 82, DOI 10.1007/BF01580293
- Roman Pol, Note on the spaces $P(S)$ of regular probability measures whose topology is determined by countable subsets, Pacific J. Math. 100 (1982), no. 1, 185–201. MR 661448
- B. È. Šapirovskiĭ, $\pi$-character and $\pi$-weight in bicompacta, Dokl. Akad. Nauk SSSR 223 (1975), no. 4, 799–802 (Russian). MR 0410632
Bibliographic Information
- R. Frankiewicz
- Affiliation: Institute of Mathematics, Polish Academy of Sciences, ul. Kopernika 18, 51-617 Wrocław, Poland
- Email: rf@impan.gov.pl
- G. Plebanek
- Affiliation: Institute of Mathematics, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wro- cław, Poland
- MR Author ID: 239421
- Email: grzes@math.uni.wroc.pl
- C. Ryll-Nardzewski
- Affiliation: Institute of Mathematics, Wrocław Technical University and Institute of Mathematics, Polish Academy of Sciences, ul. Kopernika 18, 51-617 Wrocław, Poland
- Email: crn@graf.im.pwr.wroc.pl
- Received by editor(s): July 22, 1998
- Received by editor(s) in revised form: March 8, 1999
- Published electronically: June 21, 2000
- Additional Notes: This research was partially supported by KBN grant 2P03A 018 13.
- Communicated by: Dale Alspach
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 129 (2001), 97-103
- MSC (2000): Primary 46E15, 46E27, 54C35
- DOI: https://doi.org/10.1090/S0002-9939-00-05489-7
- MathSciNet review: 1695139