Polynomial solutions to Dirichlet problems
HTML articles powered by AMS MathViewer
- by Marc Chamberland and David Siegel
- Proc. Amer. Math. Soc. 129 (2001), 211-217
- DOI: https://doi.org/10.1090/S0002-9939-00-05512-X
- Published electronically: July 27, 2000
- PDF | Request permission
Abstract:
The Dirichlet problem \begin{align*} \Delta u(x,y) &= 0 && \text {in $\mathbb {R}^2$},\\ u(x,y) &= f(x,y) && \text {on $\psi (x,y) = 0$} \end{align*} is considered where the functions $f$ and $\psi$ are polynomials. The authors study the problem of determining which functions $\psi$ will admit polynomial solutions $u$ for any polynomial $f$. When one additionally requires the classical condition $\operatorname {deg} u \leq \operatorname {deg} f$, this forces $\operatorname {deg} \psi \leq 2$, and a complete classification is obtained. Some necessary conditions are obtained for the case $\operatorname {deg} \psi >2$.References
- Sheldon Axler, Paul Bourdon, and Wade Ramey, Harmonic function theory, Graduate Texts in Mathematics, vol. 137, Springer-Verlag, New York, 1992. MR 1184139, DOI 10.1007/b97238
- Sheldon Axler and Wade Ramey, Harmonic polynomials and Dirichlet-type problems, Proc. Amer. Math. Soc. 123 (1995), no. 12, 3765–3773. MR 1277092, DOI 10.1090/S0002-9939-1995-1277092-1
- Peter Ebenfelt, Singularities encountered by the analytic continuation of solutions to Dirichlet’s problem, Complex Variables Theory Appl. 20 (1992), no. 1-4, 75–91. MR 1284354, DOI 10.1080/17476939208814588
- Peter Ebenfelt and Harold S. Shapiro, The mixed Cauchy problem for holomorphic partial differential operators, J. Anal. Math. 65 (1995), 237–295. MR 1335377, DOI 10.1007/BF02788774
- Leopold Flatto, Donald J. Newman, and Harold S. Shapiro, The level curves of harmonic functions, Trans. Amer. Math. Soc. 123 (1966), 425–436. MR 197755, DOI 10.1090/S0002-9947-1966-0197755-5
- Lowell J. Hansen and Harold S. Shapiro, Graphs and functional equations, Ann. Acad. Sci. Fenn. Ser. A I Math. 18 (1993), no. 1, 125–146. MR 1207900
- Lowell J. Hansen and Harold S. Shapiro, Functional equations and harmonic extensions, Complex Variables Theory Appl. 24 (1994), no. 1-2, 121–129. MR 1269837, DOI 10.1080/17476939408814705
- Harold S. Shapiro, An algebraic theorem of E. Fischer, and the holomorphic Goursat problem, Bull. London Math. Soc. 21 (1989), no. 6, 513–537. MR 1018198, DOI 10.1112/blms/21.6.513
- Dmitry Khavinson and Harold S. Shapiro, Dirichlet’s problem when the data is an entire function, Bull. London Math. Soc. 24 (1992), no. 5, 456–468. MR 1173942, DOI 10.1112/blms/24.5.456
- Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Springer-Verlag, New York, 1984. Corrected reprint of the 1967 original. MR 762825, DOI 10.1007/978-1-4612-5282-5
- Igor R. Shafarevich, Basic algebraic geometry. 1, 2nd ed., Springer-Verlag, Berlin, 1994. Varieties in projective space; Translated from the 1988 Russian edition and with notes by Miles Reid. MR 1328833
Bibliographic Information
- Marc Chamberland
- Affiliation: Department of Mathematics and Computer Science, Grinnell College, Grinnell, Iowa 50112-0806
- Email: chamberl@math.grin.edu
- David Siegel
- Affiliation: Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Email: dsiegel@math.uwaterloo.ca
- Received by editor(s): February 20, 1998
- Received by editor(s) in revised form: April 5, 1999
- Published electronically: July 27, 2000
- Communicated by: Albert Baernstein II
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 129 (2001), 211-217
- MSC (2000): Primary 31A25
- DOI: https://doi.org/10.1090/S0002-9939-00-05512-X
- MathSciNet review: 1694451