CONTINUATION METHOD FOR α-SUBLINEAR MAPPINGS

YONG-ZHUO CHEN

(Communicated by Dale Alspach)

Abstract. Let B be a real Banach space partially ordered by a closed convex cone P with nonempty interior. We study the continuation method for the monotone operator $A : \bar{P} \to \bar{P}$ which satisfies

$$A(tx) \geq t^{\alpha(a,b)} A(x),$$

for all $x \in \bar{P}$, $t \in [a, b] \subset (0, 1)$, where $\alpha(a, b) \in (0, 1)$. Thompson’s metric is among the main tools we are using.

1. Introduction

Let B be a real Banach space partially ordered by a closed convex cone P with nonempty interior, which is denoted by \bar{P}. Suppose $A : \bar{P} \to \bar{P}$ is monotone, i.e., $Ax \geq Ay$ when $x \geq y$, and satisfies

$$A(tx) \geq \varphi(t) A(x),$$

where $t \in (0, 1)$ and φ is a positive function on $(0, 1)$. The fixed points of this type of operator were much discussed under various assumptions on φ. Among them, M. A. Krasnosel’skii studied u_0-concave operator (5), where $\varphi(t) = [1 + \eta(x, t)] t$ with $\eta(x, t) > 0$, D. Guo established the existence of the unique fixed point for α-concave operators (3), where $\varphi(t) = t^\alpha$ with $\alpha \in (0, 1)$, and U. Krause proved fixed point theorems for ascending operators (3), where $\varphi : [0, 1] \to [0, 1]$ is continuous and $\lambda < \varphi(\lambda)$ for $\lambda \in (0, 1)$. In [1], we investigated the mixed monotone counterpart of the monotone operator A which satisfies

$$A(tx) \geq t^{\alpha(a,b)} A(x),$$

for all $x \in \bar{P}$, $t \in [a, b] \subset (0, 1)$, where $\alpha(a, b) \in (0, 1)$. This class of operator includes Guo’s α-concave operator and U. Krause’s ascending operator (see [1, Corollary 3.2]). We say that a monotone operator is α-sublinear if it satisfies (2).

One important method for solving an operator equation $F(x) = 0$ is the continuation method, i.e., to continuously deform F to a simpler operator G such that $G(x) = 0$ is easily solved. In the present paper, we intend to discuss the continuation method for α-sublinear mappings. Our work is motivated by a paper of A. Granas (3).

Received by the editors September 15, 1997 and, in revised form, April 5, 1999.

1991 Mathematics Subject Classification. Primary 47H07, 47H09; Secondary 47H10.

Key words and phrases. α-sublinear, cone, fixed point, generalized contraction, monotone operator, ordered Banach space, Thompson’s metric.

©2000 American Mathematical Society

203
x, y ∈ P − {0} are called comparable if there exist positive numbers λ and µ such that λx ≤ y ≤ µx. This defines an equivalent relationship, and splits P − {0} into disjoint components of P. P̂ is a component of P if P̂ ̸= ∅.

Unless specified otherwise, throughout this paper, we assume that the norm is monotone, i.e., 0 < x ≤ y implies that ∥x∥ ≤ ∥y∥. Hence all the cones in this paper are normal, since P is normal if B has an equivalent norm which is monotone.

Let C be a component of P and x, y ∈ C. Put

\[M(x/y) = \inf\{\lambda : x ≤ \lambda y\} \quad \text{and} \quad M(y/x) = \inf\{\mu : y ≤ \mu x\}. \]

Thompson’s metric is defined by

\[d(x, y) = \ln\{\max[M(x/y), M(y/x)]\}. \]

\(\tilde{d}(x, y) \) is a metric on C and C is complete with respect to \(\tilde{d} \) under our assumption on P ([7, Lemma 3]).

The following theorem is just the monotone operator version of Theorem 3.1 in [1], which was proved by appealing to Thompson’s metric.

Theorem 1.1. Let C be a component of P, and A : C → C be α-sublinear. Then A has exactly one fixed point \(x^* \) in C, and for any point \(x_0 \in C \), we have \(A^n(x_0) \to x^* \) as \(n \to \infty \).

We also need the following two lemmas.

Lemma 1.2 (Thompson [7]). If the norm is monotone, then

\[\|x − y\| ≤ 3be^{d(x,y)−1} \]

for all x, y ∈ P with ∥x∥ ≤ b and ∥y∥ ≤ b.

Lemma 1.3. Let \(u \in \text{P̂} \) and \(B(u, r) \subset P \), where \(B(u, r) = \{x \in B : \|x−u\| < r\} \). Then

\[\tilde{d}(x, u) ≤ \ln \{\max\left(\frac{r + \|x−u\|}{r}, \frac{r}{r − \|x−u\|}\right)\} \]

for all \(x \in B(u, r) \).

Proof. Without loss of generality, we assume \(x ≠ u \). Then \(x \in B(u, r) \) implies that \(u ± \frac{r(x−u)}{\|x−u\|} \in P \). It follows that

\[x ≤ \frac{r + \|x−u\|}{r} u \quad \text{and} \quad u ≤ \frac{r}{r − \|x−u\|} x. \]

Hence

\[\tilde{d}(x, u) ≤ \ln \{\max\left(\frac{r + \|x−u\|}{r}, \frac{r}{r − \|x−u\|}\right)\}. \]

\[\square \]

Let \((X, d) \) be a complete metric space and \(D \subset X \) a closed subset. We say that \(T : D \to X \) is a generalized contraction if for each \((a, b) \subset (0, \infty) \), there exists \(L(a, b) ∈ (0, 1) \) such that

\[d(Tx, Ty) ≤ L(a, b) d(x, y), \]

where \(x, y ∈ D \) and \(a ≤ d(x, y) ≤ b \). The following theorem is due to M. A. Krasnosel’skii ([5 Theorem 34.5], see also [2 Theorem (1.3.3)]).
Suppose and so. We claim that \(f(x^*) \) is a fixed point of \(T \), where \(x_n = T^n x, n = 1, 2, \ldots \).

This paper is organized as follows. In Section 2, we generalize A. Granas’s main theorem in \([3]\) to generalized contraction mappings. Section 3 discusses the continuation method for \(\alpha \)-sublinear mappings. An example of application is given in Section 4.

2. Topological transversality for generalized contraction mappings

In this section, \(U \) stands for a bounded open set of \(X \). Let \(G(U) \) be the set of all generalized contraction mappings \(T : U \to X \), and \(G_0(U) = \{ T \in G(U) : (\text{Fix} \; T) \cap \partial U = \emptyset \} \), where \(\text{Fix} \; T = \{ x \in U : x = Tx \} \). We denote \(\text{diam} \; U = \text{sup} \{ \| x - y \| : x, y \in U \} \) and \(\text{dist}(A_1, A_2) = \inf \{ \| x - y \| : x \in A_1, y \in A_2 \} \), where \(A_1 \) and \(A_2 \) are subsets of \(X \).

We say \(T \in G_0(U) \) is traverse or essential (cf. \([2, \text{pp. 58-60}] \) and \([3]\) if \(T \) has a fixed point, i.e., the graph of \(T \) crosses or traverses the diagonal of \(U \times X \). The following theorem discusses the topological transversality for operators in \(G_0(U) \).

Theorem 2.1. Suppose \(\{ H_t \} \subset G_0(U) \), \(t \in [0, 1] \), satisfy:

(\text{H1}) For each \((a, b) \subset (0, \infty) \), there exists \(L(a, b) \in (0, 1) \) such that
\[
\frac{d(H_t(x_1), H_t(x_2))}{d(x_1, x_2)} \leq L(a, b) d(x_1, x_2)
\]
for all \(t \in [0, 1] \) and \(x_1, x_2 \in U \) with \(a \leq d(x_1, x_2) \leq b \), where \(L(a, b) \) is independent of \(t \).

(\text{H2}) For any \(\varepsilon > 0 \), there exists \(\delta > 0 \) such that \(d(H_t(x), H_{t_2}(x)) \leq \varepsilon \) for all \(x \in U \) and \(t_1, t_2 \in [0, 1] \) with \(|t_1 - t_2| < \delta \), where \(\delta \) is independent of \(x \).

If \(H_0 \) has a fixed point in \(U \), then so does \(H_t \) for each \(t \in [0, 1] \).

Proof. Let \(\Lambda = \{ \lambda \in [0, 1] : x = H_\lambda(x) \text{ for some } x \in U \} \). \(\Lambda \neq \emptyset \) since \(0 \in \Lambda \).

(i) \(\Lambda \) is closed in \([0, 1]\).

Let \(\lambda_n \to \lambda_0 \) with \(\lambda_n \in \Lambda \) and \(x_n \in U \) such that \(x_n = H_{\lambda_n} x_n \). Then
\[
d(x_n, x_m) \leq d(H_{\lambda_n}(x_n), H_{\lambda_m}(x_n)) + d(H_{\lambda_m}(x_n), H_{\lambda_m}(x_m)).
\]
We claim that \(\{ x_n \} \) is a Cauchy sequence. Otherwise, for any \(k > 0 \), there exist \(n_k, m_k > k \) such that \(d(x_{n_k}, x_{m_k}) \geq \delta \), where \(\delta \) is a positive constant. Let \(M = \text{diam} \; U \). (5) leads to
\[
d(x_n, x_m) \leq d(H_{\lambda_n}(x_{n_k}), H_{\lambda_n}(x_{n_k})) + L(\delta, M) d(x_{n_k}, x_{m_k}),
\]
and so
\[
\delta \leq d(x_{n_k}, x_{m_k}) \leq \frac{d(H_{\lambda_n}(x_{n_k}), H_{\lambda_n}(x_{n_k}))}{1 - L(\delta, M)}.
\]
By (H2), \(d(H_{\lambda_{n_k}}(x_{n_k}), H_{\lambda_{n_k}}(x_{n_k})) \to 0 \) as \(k \to \infty \). We reach a contradiction from (6). Hence there exists \(x_0 \in U \) such that \(x_n \to x_0 \).

On the other hand,
\[
d(x_n, H_{\lambda_0}(x_0)) \leq d(H_{\lambda_n}(x_n), H_{\lambda_0}(x_n)) + d(H_{\lambda_0}(x_n), H_{\lambda_0}(x_0)) \leq d(H_{\lambda_n}(x_n), H_{\lambda_0}(x_0)) + d(x_n, x_0) \to 0 \text{ as } n \to \infty.
\]
Thus \(x_0 = H_{\lambda_0}(x_0) \). Since \((\text{Fix} \; H_{\lambda_0}) \cap \partial U = \emptyset \), \(x_0 \in U \) and \(\lambda_0 \in \Lambda \).
(ii) Λ is open in $[0, 1]$. Let $\lambda_0 \in \Lambda$ and $x_0 = H_{\lambda_0}(x_0)$, where $x_0 \in U$. Choose $r > 0$ such that $r < \text{dist} (x_0, \partial U)$. There exists $\varepsilon_1 > 0$ so that $d(H_{\lambda}(x_0), H_{\lambda_0}(x_0)) < \frac{r}{2}$ when $\|\lambda - \lambda_0\| < \varepsilon_1$. Hence for $\lambda \in [0, 1] \cap (\lambda_0 - \varepsilon_1, \lambda_0 + \varepsilon_1)$ and $x \in B(x_0, \frac{r}{2})$,

$$d(H_{\lambda}(x), x_0) \leq d(H_{\lambda}(x), H_{\lambda_0}(x_0)) + d(H_{\lambda_0}(x_0), H_{\lambda_0}(x_0)) \leq d(x, x_0) + \frac{r}{2} \leq r.$$

For $(1 - L(\frac{r}{2}, r)) r$, there exists $\varepsilon_2 > 0$ such that $d(H_{\lambda}(x_0), H_{\lambda_0}(x_0)) < (1 - L(\frac{r}{2}, r)) r$ when $\|\lambda - \lambda_0\| < \varepsilon_2$. Then for $\lambda \in [0, 1] \cap (\lambda_0 - \varepsilon_2, \lambda_0 + \varepsilon_2)$ and $x \in U$ with $\frac{r}{2} \leq d(x, x_0) \leq r$,

$$d(H_{\lambda}(x), x_0) \leq d(H_{\lambda}(x), H_{\lambda_0}(x_0)) + d(H_{\lambda_0}(x_0), H_{\lambda_0}(x_0)) \leq L(\frac{r}{2}, r) d(x, x_0) + (1 - L(\frac{r}{2}, r)) r \leq r.$$

Put $\varepsilon = \max \{\varepsilon_1, \varepsilon_2\}$. For all $\lambda \in [0, 1] \cap (\lambda_0 - \varepsilon, \lambda_0 + \varepsilon)$, we have $H_{\lambda} : \overline{B}(x_0, r) \rightarrow \overline{B}(x_0, r)$. By the Generalized Contraction Principle, there exists $x \in \overline{B}(x_0, r) \cap U$ such that $H_{\lambda}(x) = x$. We conclude that $\lambda \in \Lambda$, and $[0, 1] \cap (\lambda_0 - \varepsilon, \lambda_0 + \varepsilon) \subset \Lambda$.

Therefore $\Lambda \neq \emptyset$ is both open and closed, and consequently $\Lambda = [0, 1]$. \hfill \square

The following example illustrates that Theorem 2.1 is indeed more general than Theorem 3.1 in \mathbb{R}^n.

Example 2.2. Let $X = [0, \infty)$, $d(x, y) = \|x - y\|$ and $G_t(x) = \frac{x - t}{1 + x} + t$, where $x, y \in X$ and $t \in [0, 1]$. Consider $U = [0, 2)$. Then $\partial U = \{2\}$ For each $t \in [0, 1]$, we have

$$d(G_t(x), G_t(y)) = \frac{\|x - y\|}{(1 + x)(1 + y)} \leq \frac{\|x - y\|}{1 + \|x - y\|} = \frac{1}{1 + d(x, y)} d(x, y).$$

For $0 < a \leq d(x, y) \leq b < \infty$, we can put $L(a, b) = \frac{1}{1 + a}$. Hence G_t is a generalized contraction, however it is not a contraction in the usual sense. Since 2 is not a fixed point for any G_t and G_0 has a fixed point $0 \in U$, we apply Theorem 2.1 to conclude that G_t has a fixed point in $U = [0, 2)$ for each $t \in [0, 1]$.

3. Continuation method for α-sublinear mappings

In this section, we will use Thompson’s metric and Theorem 2.1 as tools to study α-sublinear mappings.

Theorem 3.1. Let $S_t : \hat{P} \rightarrow \hat{P}$ be monotone for each $t \in [0, 1]$, and satisfy:

(H1) For each $[a, b] \subset (0, 1)$, there exists $\alpha(a, b) \in (0, 1)$ such that

$$S_t(cx) \geq c^{\alpha(a, b)} S_t(x)$$

for all $x \in \hat{P}$ and $c \in [a, b]$, where $\alpha(a, b)$ is independent of $t \in [0, 1]$.

(H2) There exists a bounded open set U with $\overline{U} \subset \hat{P}$ and $\text{dist}(\overline{U}, \partial \hat{P}) = r > 0$. For any $\varepsilon > 0$, there exists $\delta > 0$ such that

$$\|S_{t_1}(x) - S_{t_2}(x)\| < \varepsilon$$

for all $x \in \overline{U}$ and $t_1, t_2 \in [0, 1]$ with $|t_1 - t_2| < \delta$, where δ is independent of x.

Suppose \((\text{Fix} \, S_t) \cap \partial U = \emptyset\) for all \(t \in [0, 1]\). If \(S_0\) has a fixed point in \(U\), then so does \(S_t\) for each \(t \in [0, 1]\), and the sequence \(\{S^n_t(x)\}\) converges to the unique fixed point of \(S_t\) for any \(x \in \hat{P}\).

Proof. Let \(x, y \in \hat{P}\) with \(d(x, y) \in [-\ln b, -\ln a]\), where \([a, b] \subset (0, 1)\). Without loss of generality, assume \(M(x/y) \geq M(y/x)\). Then \(d(x, y) = \ln M(x/y)\) and \(\frac{1}{a} \leq M(x/y) \leq \frac{1}{b}\). Now

\[
S_t(x) \geq S_t(M(y/x)^{-1}y) \\
\geq S_t(M(x/y)^{-1}y) \\
\geq M(x/y)^{-\alpha(a, b)}S_t(y).
\]

Thus \(M(S_t(y)/S_t(x)) \leq M(x/y)^{\alpha(a, b)}\). On the other hand,

\[
S_t(y) \geq S_t(M(x/y)^{-1}x) \\
\geq M(x/y)^{-\alpha(a, b)}S_t(x)
\]

implies that \(M(S_t(x)/S_t(y)) \leq M(x/y)^{\alpha(a, b)}\). Hence

\[
\bar{d}(S_t(x), S_t(y)) \leq \ln[M(x/y)^{\alpha(a, b)}] \\
= \alpha(a, b) \ln M(x/y) \\
= L(-\ln b, -\ln a) \bar{d}(x, y),
\]

where \(L(-\ln b, -\ln a) = \alpha(a, b)\).

Lemma 1.2 and Lemma 1.3 imply that \(U\) is also open in Thompson’s metric, and its closure \(\overline{U}\) and boundary \(\partial U\) are identical in both the norm topology and Thompson’s metric topology.

Let \(\varepsilon > 0\) be given. There exists \(\varepsilon_1 \in (0, r)\) such that

\[
\ln \{\max \left(\frac{r + \beta}{r}, \frac{r}{r - \beta}\right)\} < \varepsilon
\]

for all \(\beta \in [0, \varepsilon_1]\). By (H2), there exists \(\delta > 0\) such that \(\|S_{t_1}(x) - S_{t_2}(x)\| < \varepsilon_1\) for all \(x \in \overline{U}\) and \(t_1, t_2 \in [0, 1]\) with \(|t_1 - t_2| < \delta\). Using Lemma 1.3, we have

\[
\bar{d}(S_t(x), S_{t_{1/2}}(x)) \leq \ln \{\max \left(\frac{r + \beta}{r}, \frac{r}{r - \beta}\right)\} < \varepsilon
\]

for all \(x \in \overline{U}\) and \(t_1, t_2 \in [0, 1]\) with \(|t_1 - t_2| < \delta\). If \((\text{Fix} \, S_t) \cap \partial U = \emptyset\) for all \(t \in [0, 1]\) and \(S_0\) has a fixed point in \(U\), then we can apply Theorem 2.1 to conclude that \(S_t\) has a fixed point in \(U\) for each \(t \in [0, 1]\).

(H1) implies that the sequence \(\{S^n_t(x)\}\) converges to the unique fixed point of \(S_t\) for any \(x \in \hat{P}\) by Theorem 1.1. \(\Box\)

The following is a nonlinear alternative theorem for \(\alpha\)-sublinear mappings.

Theorem 3.2. Let \(A : \hat{P} \rightarrow \hat{P}\) be an \(\alpha\)-sublinear mapping and \(U\) be a nonempty open bounded subset with \(\overline{U} \subset \hat{P}\) and \(\text{dist}(\overline{U}, \partial \hat{P}) > 0\). If \(A(\overline{U})\) is bounded, then \(A\) has at least one of the following properties:

(i) \(A\) has a unique fixed point in \(\overline{U}\), and the sequence \(A^n(x)\) converges to that fixed point for any \(x \in \hat{P}\).

(ii) \(A(\partial U)\) contains a point of some exterior ray, i.e., there exists \(x_0 \in U\) such that \(A_{y_0} = x_0 + \tau(y_0 - x_0)\) for some \(\tau > 1\) and \(y_0 \in \partial U\).
Proof. Let \(x_0 \in U \) and consider \(S_t(x) = tAx + (1 - t)x_0 \). By the definition of \(\alpha \)-sublinear mapping, for each \([a, b] \subset (0, 1)\), there exists \(\alpha(a, b) \in (0, 1) \) such that for all \(x \in \overset{\circ}{P} \) and \(c \in [a, b] \),

\[
S_t(cx) = tA(cx) + (1 - t)x_0 \\
\geq t\alpha(a, b)Ax + (1 - t)x_0 \\
\geq \alpha(a, b)(tAx + (1 - t)x_0) \\
= \alpha(a, b)S_t(x).
\]

Let \(M = \sup\{\|y\| : y \in A(U)\} \). For any \(\varepsilon > 0 \), choose \(\delta = \frac{\varepsilon}{2\max\{M, \|x_0\|\}} \). Then for \(x \in \bar{U} \) and \(t_1, t_2 \in [0, 1] \) with \(|t_1 - t_2| < \delta \),

\[
\|S_{t_1}(x) - S_{t_2}(x)\| = \|(t_1 - t_2)Ax - (t_1 - t_2)x_0\| \\
\leq |t_1 - t_2|\|Ax\| + |t_1 - t_2|\|x_0\| \\
< \varepsilon.
\]

Note that \(S_0 \) has a fixed point \(x_0 \in U \). Assume that \(A \) does not have a fixed point in \(\bar{U} \), then by Theorem 3.1, there exists \(y_0 \in \partial U \) and \(t \in (0, 1) \) such that \(S_t(y_0) = y_0 \), i.e., \(tAy_0 + (1 - t)x_0 = y_0 \). It follows that \(Ay_0 = x_0 + \tau(y_0 - x_0) \), where \(\tau = \frac{1}{t} > 1 \).

Remark. The distinction between cases (i) and (ii) in Theorem 3.2 cannot be sharpened to a proper alternative. Let’s consider the so-called square root version of Fibonacci’s rabbit population model:

\[
\overset{\circ}{P} = R^2_+, \quad A(a, b) = (\sqrt{a} + \sqrt{b}, \sqrt{a}), \quad (a, b) \in R^2_+.
\]

Suppose \(U = (3, 4) \times (1, 2) \subset R^2_+ \). It is easy to check that \(A \) has a fixed point \((a^*, b^*) \approx (3.08, 1.75) \in U \) and \(A(U) = \left[1 + \sqrt{3}, 2 + \sqrt{2}\right] \times \left[\sqrt{3}, 2\right] \). Take \(y_0 = (3.144) \in \partial U \); then \(Ay_0 = (1.2 + \sqrt{3}, \sqrt{3}) \). Now there exists \(x_0 = (4.8 - \sqrt{3}, 2.88 - \sqrt{3}) \in U \) such that \(A(y_0) = x_0 + \tau(y_0 - x_0) \) with \(\tau = 2 \). Hence cases (i) and (ii) in Theorem 3.2 are not mutually exclusive.

4. Example

The following example illustrates the application of Theorem 3.2 to the Dirichlet problem for a uniformly elliptic differential operator.

Let \(\Omega \) be a bounded convex domain in \(R^n \) \((n \geq 2)\), whose boundary \(\partial \Omega \) belongs to \(C^{2+\mu} \) \((0 < \mu < 1)\) and consider the Dirichlet problem

\[
\begin{cases}
Lu = f(x, u), \\
u|_{\partial \Omega} = 0,
\end{cases}
\]

where

\[
Lu = -\sum_{i,j=1}^n a_{ij}(x)\frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{i=1}^n b_i(x)\frac{\partial u}{\partial x_i} + c(x)u
\]

is a uniformly elliptic differential operator, i.e., there exists \(\nu > 0 \) such that

\[
\sum_{i,j=1}^n a_{ij}(x)\xi_i \xi_j \geq \nu |\xi|^2, \quad x \in \bar{\Omega}, \quad \xi = (\xi_1, \cdots, \xi_n) \in R^n,
\]
and \(a_{ij}(x) = a_{ji}(x), \ c(x) \geq 0, \) all coefficients \(a_{ij}, b_i, c \in C^0(\Omega). \)

Suppose \(f(x, u) > 0 \) is continuous for all \(x \in \bar{\Omega} \) and \(u \geq 0. \) The solution of (8) is equivalent to the fixed point of the integral operator

\[
Au(x) = \int_{\Omega} G(x, y) f(y, u(y)) \, dy,
\]

where \(G(x, y) \) is the corresponding Green function which satisfies

\[
0 < G(x, y) < \begin{cases}
 k_0 |x - y|^{2-n}, & n > 2, \\
 k_0 \ln |x - y|, & n = 2
\end{cases}
\]

where \(x, y \in \Omega \) and \(x \neq y. \)

It is well known that \(A \) is monotone and completely continuous from \(P \) into \(P \) (see [4] pp. 60-62), where \(P = \{ u \in C(\Omega) \mid u(x) \geq 0, \forall x \in \Omega \}. \) The sup norm of \(C(\Omega) \) is monotone in the partial order introduced by cone \(P. \) Note that \(\hat{P} = \{ u \in C(\Omega) \mid u(x) > 0, \forall x \in \Omega \}, \) and it is easy to see \(A : \hat{P} \to \hat{P}. \) Let \(U = \{ u \in C(\bar{\Omega}) \mid m < u(x) < M, \forall x \in \bar{\Omega} \}, \) where \(m \) and \(M \) are positive constants. Then \(\bar{U} \subset \hat{P} \) and \(A(\bar{U}) \) is bounded due to the complete continuity of \(A. \)

If there exists a lower semicontinuous function \(\phi : (0, 1) \to (0, 1) \) such that \(\phi(r) > r \) and

\[
f(x, tu) \geq \phi(t) f(x, u),
\]

then \(A(tu) \geq \phi(t) A(u). \) This implies that \(A \) is \(\alpha \)-linear by observing \(\phi(t) = \frac{t^\alpha}{\log \phi(t)} \)

and \(\log \phi(t) \) attains its maximum \(\alpha(a, b) \) on each \([a, b] \subset (0, 1) \) due to the lower semicontinuity of \(\phi. \) Applying Theorem 3.2, we have at least one of the following:

(i) \(A \) has a unique fixed point \(u_0 \in \bar{U} \) and the sequence

\[
u_{n+1}(x) = \int_{\Omega} G(x, y) f(y, u_n(y)) \, dy, \quad n = 1, 2, \ldots,
\]

converges to \(u_0(x) \) in sup norm for any initial function \(u_1 \in C(\Omega) \) with \(u_1(x) > 0 \) for all \(x \in \bar{\Omega}. \)

(ii) \(A(\partial U) \) contains a point of some exterior ray, i.e., there exists \(u_0 \in C(\Omega) \) with \(m < u(x) < M, x \in \bar{\Omega}, \) such that

\[
\int_{\Omega} G(x, y) f(y, v_0(y)) \, dy = u_0 + \tau (v_0(x) - u_0(x))
\]

for some \(\tau > 1 \) and \(v_0 \in \partial U. \)

Acknowledgement

The author is very grateful to the referee for many valuable comments and suggestions.

References

Division of Natural Sciences, University of Pittsburgh at Bradford, Bradford, Pennsylvania 16701

E-mail address: yong@imap.pitt.edu