Spectra of subdivision operators
HTML articles powered by AMS MathViewer
- by Ding-Xuan Zhou
- Proc. Amer. Math. Soc. 129 (2001), 191-202
- DOI: https://doi.org/10.1090/S0002-9939-00-05727-0
- Published electronically: June 21, 2000
- PDF | Request permission
Abstract:
Let $a:=\{ a(k)\}_{k\in \mathbb {Z}}$ be a sequence of complex numbers and $a(k)=0$ except for finitely many $k$. The subdivision operator $S_{a}$ associated with $a$ is the bi-infinite matrix $S_{a}:= \left ( a(j-2k)\right )_{j, k\in \mathbb {Z}}$. This operator plays an important role in wavelet analysis and subdivision algorithms. As the adjoint it is closely related to the well-known transfer operators (also called Ruelle operator). In this paper we show that for any $1\le p\le \infty$, the spectrum of $S_{a}$ in $\ell _{p}(\mathbb {Z})$ is always a closed disc centered at the origin. Moreover, except for finitely many points, all the points in the open disc of the spectrum lie in the residual spectrum.References
- Rufus Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin-New York, 1975. MR 0442989
- Ola Bratteli and Palle E. T. Jorgensen, Iterated function systems and permutation representations of the Cuntz algebra, Mem. Amer. Math. Soc. 139 (1999), no. 663, x+89. MR 1469149, DOI 10.1090/memo/0663
- J. Campbell and Y. Latushkin, Sharp estimates in Ruelle theorems for matrix transfer operators, Comm. Math. Phys. 185 (1997), no. 2, 379–396. MR 1463047, DOI 10.1007/s002200050095
- Alfred S. Cavaretta, Wolfgang Dahmen, and Charles A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc. 93 (1991), no. 453, vi+186. MR 1079033, DOI 10.1090/memo/0453
- Albert Cohen and Ingrid Daubechies, A new technique to estimate the regularity of refinable functions, Rev. Mat. Iberoamericana 12 (1996), no. 2, 527–591. MR 1402677, DOI 10.4171/RMI/207
- Ingrid Daubechies and Jeffrey C. Lagarias, Two-scale difference equations. II. Local regularity, infinite products of matrices and fractals, SIAM J. Math. Anal. 23 (1992), no. 4, 1031–1079. MR 1166574, DOI 10.1137/0523059
- Gilles Deslauriers and Serge Dubuc, Erratum: “Symmetric iterative interpolation processes” [Constr. Approx. 5 (1989), no. 1, 49–68; MR0982724 (90c:65016)], Constr. Approx. 8 (1992), no. 1, 125–126. MR 1142698, DOI 10.1007/BF01208910
- T. N. T. Goodman, Charles A. Micchelli, and J. D. Ward, Spectral radius formulas for subdivision operators, Recent advances in wavelet analysis, Wavelet Anal. Appl., vol. 3, Academic Press, Boston, MA, 1994, pp. 335–360. MR 1244611
- Christopher Heil, Gilbert Strang, and Vasily Strela, Approximation by translates of refinable functions, Numer. Math. 73 (1996), no. 1, 75–94. MR 1379281, DOI 10.1007/s002110050185
- Mark C. Ho, Spectra of slant Toeplitz operators with continuous symbols, Michigan Math. J. 44 (1997), no. 1, 157–166. MR 1439675, DOI 10.1307/mmj/1029005627
- Rong Qing Jia, Subdivision schemes in $L_p$ spaces, Adv. Comput. Math. 3 (1995), no. 4, 309–341. MR 1339166, DOI 10.1007/BF03028366
- R. Q. Jia, S. D. Riemenschneider, and D. X. Zhou, Approximation by multiple refinable functions, Canad. J. Math. 49 (1997), no. 5, 944–962. MR 1604122, DOI 10.4153/CJM-1997-049-8
- Rong-Qing Jia, S. D. Riemenschneider, and Ding-Xuan Zhou, Vector subdivision schemes and multiple wavelets, Math. Comp. 67 (1998), no. 224, 1533–1563. MR 1484900, DOI 10.1090/S0025-5718-98-00985-5
- R. Q. Jia, S. D. Riemenschneider, and D. X. Zhou, Smoothness of multiple refinable functions and multiple wavelets, SIAM J. Matrix Anal. Appl. 21 (1999), 1–28.
- Charles A. Micchelli, Mathematical aspects of geometric modeling, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 65, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995. MR 1308048, DOI 10.1137/1.9781611970067
- Charles A. Micchelli and Hartmut Prautzsch, Uniform refinement of curves, Linear Algebra Appl. 114/115 (1989), 841–870. MR 986909, DOI 10.1016/0024-3795(89)90495-3
- Gian-Carlo Rota and Gilbert Strang, A note on the joint spectral radius, Indag. Math. 22 (1960), 379–381. Nederl. Akad. Wetensch. Proc. Ser. A 63. MR 0147922
- David Ruelle, An extension of the theory of Fredholm determinants, Inst. Hautes Études Sci. Publ. Math. 72 (1990), 175–193 (1991). MR 1087395
- Gilbert Strang and Ding-Xuan Zhou, Inhomogeneous refinement equations, J. Fourier Anal. Appl. 4 (1998), no. 6, 733–747. MR 1666013, DOI 10.1007/BF02479677
- Lars F. Villemoes, Wavelet analysis of refinement equations, SIAM J. Math. Anal. 25 (1994), no. 5, 1433–1460. MR 1289147, DOI 10.1137/S0036141092228179
- Lawrence M. Graves, The Weierstrass condition for multiple integral variation problems, Duke Math. J. 5 (1939), 656–660. MR 99
- Ding-Xuan Zhou, The $p$-norm joint spectral radius for even integers, Methods Appl. Anal. 5 (1998), no. 1, 39–54. MR 1631335, DOI 10.4310/MAA.1998.v5.n1.a2
- D. X. Zhou, Multiple refinable Hermite interpolants, J. Approx. Theory 102 (2000), 46–71.
Bibliographic Information
- Ding-Xuan Zhou
- Affiliation: Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
- Email: mazhou@math.cityu.edu.hk
- Received by editor(s): June 24, 1998
- Received by editor(s) in revised form: March 31, 1999
- Published electronically: June 21, 2000
- Additional Notes: This research was supported in part by Research Grants Council of Hong Kong
- Communicated by: David R. Larson
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 129 (2001), 191-202
- MSC (1991): Primary 42C15, 47B35
- DOI: https://doi.org/10.1090/S0002-9939-00-05727-0
- MathSciNet review: 1784023