Weyl spectra of operator matrices
HTML articles powered by AMS MathViewer
- by Woo Young Lee
- Proc. Amer. Math. Soc. 129 (2001), 131-138
- DOI: https://doi.org/10.1090/S0002-9939-00-05846-9
- Published electronically: July 27, 2000
- PDF | Request permission
Abstract:
In this paper it is shown that if $M_{C}=\left (\begin {smallmatrix}A&C 0&B\end {smallmatrix} \right )$ is a $2\times 2$ upper triangular operator matrix acting on the Hilbert space $\mathcal {H}\oplus \mathcal {K}$ and if $\omega (\cdot )$ denotes the “Weyl spectrum", then the passage from $\omega (A)\cup \omega (B)$ to $\omega (M_{C})$ is accomplished by removing certain open subsets of $\omega (A) \cap \omega (B)$ from the former, that is, there is equality \begin{equation*}\omega (A)\cup \omega (B)=\omega (M_{C}) \cup \mathfrak {S}, \end{equation*} where $\mathfrak {S}$ is the union of certain of the holes in $\omega (M_{C})$ which happen to be subsets of $\omega (A)\cap \omega (B)$.References
- S. K. Berberian, An extension of Weyl’s theorem to a class of not necessarily normal operators, Michigan Math. J. 16 (1969), 273–279. MR 250094
- S. K. Berberian, The Weyl spectrum of an operator, Indiana Univ. Math. J. 20 (1970/71), 529–544. MR 279623, DOI 10.1512/iumj.1970.20.20044
- Bernard Chevreau, On the spectral picture of an operator, J. Operator Theory 4 (1980), no. 1, 119–132. MR 587370
- L. A. Coburn, Weyl’s theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285–288. MR 201969
- Hong Ke Du and Pan Jin, Perturbation of spectrums of $2\times 2$ operator matrices, Proc. Amer. Math. Soc. 121 (1994), no. 3, 761–766. MR 1185266, DOI 10.1090/S0002-9939-1994-1185266-2
- Israel Gohberg, Seymour Goldberg, and Marinus A. Kaashoek, Classes of linear operators. Vol. I, Operator Theory: Advances and Applications, vol. 49, Birkhäuser Verlag, Basel, 1990. MR 1130394, DOI 10.1007/978-3-0348-7509-7
- Robin Harte, Fredholm, Weyl and Browder theory, Proc. Roy. Irish Acad. Sect. A 85 (1985), no. 2, 151–176. MR 845539
- Robin Harte, Invertibility and singularity for bounded linear operators, Monographs and Textbooks in Pure and Applied Mathematics, vol. 109, Marcel Dekker, Inc., New York, 1988. MR 920812
- Robin Harte and Woo Young Lee, The punctured neighbourhood theorem for incomplete spaces, J. Operator Theory 30 (1993), no. 2, 217–226. MR 1305505
- Robin Harte and Woo Young Lee, An index formula for chains, Studia Math. 116 (1995), no. 3, 283–294. MR 1360708
- Robin Harte and Woo Young Lee, Another note on Weyl’s theorem, Trans. Amer. Math. Soc. 349 (1997), no. 5, 2115–2124. MR 1407492, DOI 10.1090/S0002-9947-97-01881-3
- Kirti K. Oberai, On the Weyl spectrum, Illinois J. Math. 18 (1974), 208–212. MR 333762
- Carl M. Pearcy, Some recent developments in operator theory, Regional Conference Series in Mathematics, No. 36, American Mathematical Society, Providence, R.I., 1978. MR 0487495
- Joseph G. Stampfli, Hyponormal operators, Pacific J. Math. 12 (1962), 1453–1458. MR 149282
- H. Weyl, Über beschränkte quadratische Formen, deren Differenz vollsteig ist, Rend. Circ. Mat. Palermo 27 (1909), 373–392.
- Kung Wei Yang, Index of Fredholm operators, Proc. Amer. Math. Soc. 41 (1973), 329–330. MR 318946, DOI 10.1090/S0002-9939-1973-0318946-5
- Kung Wei Yang, The generalized Fredholm operators, Trans. Amer. Math. Soc. 216 (1976), 313–326. MR 423114, DOI 10.1090/S0002-9947-1976-0423114-X
Bibliographic Information
- Woo Young Lee
- Affiliation: Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea
- MR Author ID: 263789
- Email: wylee@yurim.skku.ac.kr
- Received by editor(s): November 21, 1997
- Received by editor(s) in revised form: May 1, 1998, and March 10, 1999
- Published electronically: July 27, 2000
- Additional Notes: This work was supported by the BSRI(96-1420) and KOSEF through the GARC at Seoul National University.
- Communicated by: David R. Larson
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 129 (2001), 131-138
- MSC (1991): Primary 47A53, 47A55
- DOI: https://doi.org/10.1090/S0002-9939-00-05846-9
- MathSciNet review: 1784020