MIRROR SYMMETRY AND \mathbb{C}^\times

NOBUYOSHI TAKAHASHI

(Communicated by Ron Donagi)

Abstract. We show that counting functions of covers of \mathbb{C}^\times are equal to sums of integrals associated to certain 'Feynman' graphs. This is an analogue of the mirror symmetry for elliptic curves.

1. Introduction and main result

According to Mirror Symmetry, it is believed that various counting functions on Calabi-Yau manifolds are related to period integrals on their mirror families. One case where the relation is well understood is that of 1-dimensional compact Calabi-Yau manifolds, that is, elliptic curves. In [D], it is shown that the counting function of simply ramified finite coverings of an elliptic curve is equal to the partition functions in fermionic and bosonic field theories on the mirror family.

We can also consider non-compact but algebraic analogues of Calabi-Yau manifolds. The simplest one is \mathbb{C}^\times: we regard it as an 'open Calabi-Yau manifold' since it has a nowhere vanishing holomorphic 1-form dz/z that has only logarithmic poles at 0 and ∞. We consider the following enumerative problem and show that the resulting functions are equal to bosonic partition functions on \mathbb{C}^\times.

Definition 1.1. Let b be a nonnegative integer and $k, l, d_1, \ldots, d_k, e_1, \ldots, e_l$ positive integers. We consider \mathbb{C}^\times as $\mathbb{P}^1 \setminus \{0, \infty\}$ and take distinct points $P_1, \ldots, P_b \in \mathbb{C}^\times$ and sufficiently small circles γ and γ' around 0 and ∞ respectively. Let δ (resp. δ') be the disjoint union of d_i-ple (resp. e_i-ple) covers of γ (resp. γ'), and let $p: \delta \to \mathbb{C}^\times$ (resp. $p': \delta' \to \mathbb{C}^\times$) be the natural map.

Then we define $n_{b,d_1,\ldots,d_k,e_1,\ldots,e_l}$ to be the number of isomorphism classes of quadruples (C, π, i, i') where:

- C is a possibly non-connected smooth curve,
- $\pi: C \to \mathbb{C}^\times$ is a finite covering that is simply ramified over P_1, \ldots, P_b (i.e., exactly one branch maps with degree 2) and unramified elsewhere, and
- $i: \delta \to C$ and $i': \delta' \to C$ satisfy $\pi \circ i = p$ and $\pi \circ i' = p'$.

Here, an isomorphism of (C_1, π_1, i_1, i_1') and (C_2, π_2, i_2, i_2') is an isomorphism $f: C_1 \to C_2$ such that $\pi_2 \circ f = \pi_1$, $f \circ i_1 = i_2$ and $f \circ i_1' = i_2'$.

Definition 1.2. Let $F_{b,k,l}(z_1, \ldots, z_k; w_1, \ldots, w_l)$ be the generating function

$$
\sum n_{b,d_1,\ldots,d_k,e_1,\ldots,e_l} z_1^{d_1} \cdots z_k^{d_k} w_1^{-e_1} \cdots w_l^{-e_l}.
$$
Remark 1.3. (1) The number $n_{b:d_1,\ldots, d_k:e_1,\ldots,e_l}$ is nonzero only if $\sum d_i = \sum e_i$. Thus, $F_{b,k,l}$ is homogeneous of degree 0.

(2) If $k + l + b$ is odd, we have $F_{b,k,l} = 0$.

For bosonic interpretation, we consider the following ‘Feynman’ graphs. Figure 1 shows examples.

Definition 1.4. Let b be a nonnegative integer and k, l positive integers. We consider sets $V_1 = \{z_1, \ldots, z_k\}$, $V_2 = \{x_1, \ldots, x_b\}$, $V_3 = \{w_1, \ldots, w_l\}$ and $V = V_1 \coprod V_2 \coprod V_3$.

We define a partial ordering on V as follows: for $v, v' \in V$, $v < v'$ if and only if $v \in V_i$, $v' \in V_{i'}$ with $i < i'$ or $v = x_j$, $v' = x_{j'}$ and $j < j'$.

Let E be a set and v_{in}, v_{fin} maps $E \to V$. Then V and E define an oriented graph. Now we define $G_{b,k,l}$ as the set of graphs satisfying:

- for any $e \in E$, $v_{in}(e) < v_{fin}(e)$,
- $\# \{e \in E|v_{in}(e) = z_i\} = 1$,
- $\{\# \{e \in E|v_{in}(e) = x_i\}, \# \{e \in E|v_{fin}(e) = x_i\}\} = \{1, 2\}$, and
- $\# \{e \in E|v_{fin}(e) = w_i\} = 1$.

We define an isomorphism of graphs (E, v_{in}, v_{fin}) and (E', v'_{in}, v'_{fin}) to be a bijection of E and E' that commutes with v_{in}, v_{fin} and v'_{in}, v'_{fin}.

The following is our ‘Bosons’ formula.

Theorem 1.5. In the notations of Definition 1.4, we regard elements of V as variables. Then, if $\max\{|z_i|\} < r_1 < \cdots < r_b < \min\{|w_i|\}$, we have

$$F_{b,k,l}(z_1, \ldots, z_k; w_1, \ldots, w_l) = \sum_{[\Gamma] \in G_{b,k,l}} \frac{I_{\Gamma}}{\# Aut(\Gamma)},$$

where, for $\Gamma = (E, v_{in}, v_{fin})$, I_{Γ} is defined as

$$\prod_{i=1}^b \left(\int_{|x_i| = r_i} \frac{dx_i}{2\pi\sqrt{-1L_i}} \right) \prod_{e \in E} \frac{v_{in}(e)v_{fin}(e)}{(v_{in}(e) - v_{fin}(e))^2}.$$
We define \[\{ \# e \in E \mid v_{in}(e) = x_i \}, \# e \in E \mid v_{fin}(e) = x_i \} = \{ 1, 2 \} \]
replaced by \[\{ \# e \in E \mid v_{in}(e) = x_i \}, \# e \in E \mid v_{fin}(e) = x_i \} = \{ 0, 3 \}. \]
For such a graph, the integral in Theorem 1.4 is 0 since all the poles of the integrand with respect to \(x_i \) are either all contained in \(|x_i| < r_i \) or in \(|x_i| > r_i \).
Thus, \(F_{b,k,l} \) is also equal to the sum of the integrals as in Theorem 1.5 over the set of isomorphism classes of graphs \(\Gamma \) with ‘incoming’, ‘intermediate’ and ‘outgoing’ vertices \(z_1, \ldots, z_k; x_1, \ldots, x_l; w_1, \ldots, w_l \) — ordering of intermediate vertices is essential — satisfying the following conditions:
- the graph has no loops, that is, the two end points of any edge are not the same vertex,
- each vertex \(x_i \) has three edges connected,
- each \(z_i \) is connected to exactly one of \(x_1, \ldots, x_l; w_1, \ldots, w_l \) and each \(w_l \) is connected to exactly one of \(x_1, \ldots, x_l; z_1, \ldots, z_k \).

\[\text{Remark 1.6.} \]
Consider a graph as in Definition 1.4 with the condition \[\{ \# e \in E \mid v_{in}(e) = x_i \}, \# e \in E \mid v_{fin}(e) = x_i \} = \{ 1, 2 \} \]
replaced by \[\{ \# e \in E \mid v_{in}(e) = x_i \}, \# e \in E \mid v_{fin}(e) = x_i \} = \{ 0, 3 \}. \]

\[\text{Remark 1.7. (1) As for ‘Fermions’ formula in [D], it is straightforward to modify} \]
the arguments in §5 of [D] to prove the following formula:
\[\sum_{b=0}^{\infty} F_{b,1,1}(q;1) \frac{\lambda^b}{b!} = \left(\sum_{p \in \mathbb{Z}_{\geq 0} + 1/2} q^p e^{\lambda p^2/2} \right) \left(\sum_{p \in \mathbb{Z}_{\geq 0} + 1/2} q^p e^{-\lambda p^2/2} \right). \]
\[\text{[D]} \] shows that the generating function for all \(n_{b,d_1,\ldots,d_k;e_1,\ldots,e_l} \)'s satisfies the Toda lattice hierarchy of Ueno and Takasaki.

(2) The related problem of counting the numbers of covers of \(\mathbb{P}^1 \) with arbitrary ramification over \(\mathbb{C}^\times \), called Hurwitz numbers, is also being actively studied (see, for example, [SSV], [V], [GJ1], [GJ2]). This can be seen as an analogue of enumeration of curves in Fano manifolds, and as in the case of Fano manifolds, some recursive formulas are known.

(3) In dimension 2, the author counted curves of degree up to 8 in an affine cubic surface which are images of morphisms from an affine line (14), and interpreted those numbers from the viewpoint of mirror symmetry of log surfaces (15).

2. Proof

Now we prove Theorem 1.5. We use notations in Definitions 1.1 and 1.4. Let \(d_1, \ldots, d_k \) and \(e_1, \ldots, e_l \) be positive integers such that \(\sum d_i = \sum e_i = d \). We rewrite \(n_{b,d_1,\ldots,d_k;e_1,\ldots,e_l} \) as in §4 of [D].

\[\text{Definition 2.1.} \]
We denote the group of permutations of \(\{ 1, \ldots, d \} \) by \(S_d \).
Let \(\bar{d} = \sum_{j=1}^{i} d_j \), and let \(\sigma_{d_1,\ldots,d_k} \in S_d \) be the permutation
\[(\bar{d}_0 + 1 \quad \ldots \quad \bar{d}_1)(\bar{d}_1 + 1 \quad \ldots \quad \bar{d}_2) \ldots (\bar{d}_{k-1} + 1 \quad \ldots \quad \bar{d}_k). \]
We define \(\epsilon_i \) and \(\sigma_{e_1,\ldots,e_l} \) in the same way.

For \(\sigma, \tau \in S_d \), we write \(\sigma \tau = \tau^{-1} \sigma \tau = \tau \circ \sigma \circ \tau^{-1} \).

\[\text{Lemma 2.2.} \]
\(n_{b,d_1,\ldots,d_k;e_1,\ldots,e_l} \) is the number of sequences \((g_1, \ldots, g_k, \tau) \), where \(g_i \in S_d \) are transpositions and \(\tau \in S_d \), such that \(g_k \cdots g_1 \sigma_{d_1,\ldots,d_k} \) is a sequence of \(\sigma_{e_1,\ldots,e_l} \).
Proof. We may take \(\gamma = \{|z| = r_0\} \), \(\gamma' = \{|z| = r_b\} \) and \(P_i = x_ie^{\epsilon\sqrt{-1}} \), where \(0 < r_0 < x_1 < \cdots < x_b < r_b \) and \(0 < \epsilon \ll 1 \). Also choose \(r_i \) with \(x_i < r_i < x_{i+1} \) for \(i = 1, \ldots, b-1 \). Then, let \(\gamma_i \) be the cycle that starts at \(r_0 \), goes to \(r_i \), then runs on \(jz_j = r_i \) counterclockwise and goes back to \(r_0 \) (see Figure 2).

We choose a numbering of \(\gamma_0 \) such that the monodromy of \(\gamma_0 \) is \(d_1, \ldots, d_k \). Similarly, for \(\gamma_b \), we give a numbering so that the monodromy along the circle \(jz_j = r_b \), counterclockwise, is \(e_1, \ldots, e_l \).

Let \((C, \pi, i, i') \) be given. Then, we can talk of monodromy \(\tilde{g}_i \in S_d \) of \(\pi \) along \(\gamma_i \). Then \(g_i := \tilde{g}_i\tilde{g}_{i-1}^{-1} \) is a transposition, since it is the monodromy of the simple ramification over \(P_i \). Also, let \(\tau \in S_d \) be the permutation defined by the path from \(r_b \) to \(r_0 \) and numbering of \(p^{-1}(r_b) \) and \(p^{-1}(r_0) \). Then, we have \(g_b \cdots g_1 \sigma_d \cdots \sigma_1 = \tilde{g}_b = (\sigma_{e_1, \ldots, e_l})^\tau \).

Conversely, such \((g_1, \ldots, g_b, \tau) \) defines \((C, \pi, i, i') \).

We associate a graph to each \((g_1, \ldots, g_b, \tau) \) as in the above lemma.

Definition 2.3. Let \((g_1, \ldots, g_b, \tau) \) be as in the above lemma. For \(i = 0, \ldots, b \), let \(E_i \) be the set of cyclic components of \(g_i \cdots g_1 \sigma_d \cdots \sigma_1 \).

Let \(\sim \) be the equivalence relation on \(\prod E_i \) generated by the following relation: for \(\sigma \in E_i \) and \(\sigma' \in E_{i+1} \), \(\sigma \sim \sigma' \) if \(\sigma = \sigma' \) as elements of \(S_d \).

Then let \(E = \prod E_i/\sim \). For an element \(e = \{\sigma_{i_0}, \sigma_{i_0+1}, \ldots, \sigma_{i_1}\} \) of \(E \), where \(\sigma_i \in E_i \), we define \(v_{in}(e) \) to be \(x_{i_0} \) if \(i_0 > 0 \) and \(v_{fin}(e) \) to be \(x_{i_1+1} \) if \(i_1 < b \). If \(i_0 = 0 \), we take \(v \) to satisfy \(\sigma_0 = (\tilde{d}_{v-1} + 1 \cdots \tilde{d}_v) \) and let \(v_{in}(e) = z_v \), and similarly if \(i_1 = b \), we take \(v \) with \(\sigma_b = (\tilde{e}_{v-1} + 1 \cdots \tilde{e}_v)^\tau \) and let \(v_{fin}(e) = w_v \).

We say \((g_1, \ldots, g_b, \tau) \) belongs to (the isomorphism class of) \((E, v_{in}, v_{fin}) \).
Remark 2.4. In the situation of the above lemma and definition, E_i is naturally in one-to-one correspondence with the set of connected components of $\pi^{-1}(\{|z| = r_i\})$. The graph defined describes how these cycles meet and break.

Lemma 2.5. The isomorphism class of (E, v_{in}, v_{fin}) defined in Definition 2.3 belongs to $G_{b,k,l}$.

Proof. We use notations in Definition 2.3.

If $\sigma_i \in E_i$ and e is the equivalence class of σ_i, then $v_{in}(e) = x_i$ if and only if g_i and σ_i intersect and $v_{fin}(e) = x_{i+1}$ if and only if σ_i and g_{i+1} intersect.

There are either one or two cyclic components of $g_{i-1} \cdots g_1 \sigma_{d_1} \ldots d_k$ that intersect g_i, since g_i is a transposition. If there is only one, say σ_{i-1}, then two components of $g_i \cdots g_1 \sigma_{d_1} \ldots d_k$ intersect g_i, i.e. the two components of $g_1 \sigma_{i-1}$.

In this case, we have $\#(e \in E | v_{in}(e) = x_i) = 2$ and $\#(e \in E | v_{fin}(e) = x_i) = 1$. If there are two, σ_{i-1} and σ'_i, then $g_i \sigma_{i-1} \sigma'_i$ is the sole component of $g_i \cdots g_1 \sigma_{d_1} \ldots d_k$ that intersects g_i, and we have $\#(e \in E | v_{in}(e) = x_i) = 1$, $\#(e \in E | v_{fin}(e) = x_i) = 2$.

The other properties are easy to see.

Definition 2.6. For a graph $\Gamma = (E, v_{in}, v_{fin})$, let $n_{\Gamma; d_1, \ldots, d_k; e_1, \ldots, e_i}$ be the number of sequences (g_1, \ldots, g_l, τ), where g_i are transpositions and $\tau \in S_d$, such that $g_k \cdots g_1 \sigma_{d_1} \ldots d_k = (\sigma_{e_1} \ldots e_i)^{\tau}$ and that the associated graph is isomorphic to Γ.

Also, let

$$F_\Gamma(z_1, \ldots, z_k; w_1, \ldots, w_l) = \sum n_{\Gamma; d_1, \ldots, d_k; e_1, \ldots, e_i} z_1^{d_1} \cdots z_k^{d_k} w_1^{-e_1} \cdots w_l^{-e_l}.$$

From the two lemmas above, it suffices to prove the following to prove Theorem 1.5.

Proposition 2.7. Let Γ be a graph whose isomorphism class belongs to $G_{b,k,l}$. Then, if max$\{|z_i|\} < \min\{|w_i|\}$, we have

$$F_\Gamma(z_1, \ldots, z_k; w_1, \ldots, w_l) = \frac{I_\Gamma}{\#Aut(\Gamma)},$$

where, as in Theorem 1.5,

$$I_\Gamma := \prod_{i=1}^b \left(\int_{|x_i| = r_i} dx_i \right) \prod_{e \in E} \frac{v_{in}(e) v_{fin}(e)}{(v_{in}(e) - v_{fin}(e))^2},$$

with max$\{|z_i|\} < r_1 < \cdots < r_b < \min\{|w_i|\}$.

We prove the proposition by induction on b.

Claim 2.8. Proposition 2.7 holds for $b = 0$.

Proof. In this case, we have $k = l$ and Γ connects z_i to $w_{\sigma(i)}$ for some $\sigma \in S_k$. By symmetry, we may assume $\sigma = id$. Then, $\tau \in S_d$ satisfies $\sigma_{d_1} \cdots d_k = (\sigma_{e_1} \cdots e_k)^{\tau}$ and the associated graph is isomorphic to Γ if and only if $d_i = e_i$ and

$$(\hat{d}_{i-1} + 1 \ldots \hat{d}_i) = (\hat{e}_{i-1} + 1 \ldots \hat{e}_i)^{\tau}$$

for $i = 1, \ldots, k$. When $d_i = e_i$, the number of such τ is $\prod d_i$. Now

$$\sum_{d_1, \ldots, d_k = 1}^{\infty} \prod d_i \prod (z_i^{d_i} w_i^{d_i}) = \prod \frac{z_i w_i}{(z_i - w_i)^2}$$

proves the claim.
Claim 2.9. If Proposition 2.7 holds for $b = n$, it holds for $b = n + 1$.

Proof. Let $\Gamma = (E, v_m, v_{fin})$ be an element of $G_{n+1,k,l}$.

Case (1): $\# \{e \in E | v_{fin}(e) = x_{n+1} \} = 1$.

By symmetry, we may assume $v_{fin}(e) = w_l$. There are two edges e', e'' such that $v_{fin}(e') = v_{fin}(e'') = x_{n+1}$. Let $\Gamma' \in G_{n+1,k,l+1}$ be the graph obtained by removing x_{n+1} and connecting e' to w_l and e'' to w_{l+1}.

Write $\tilde{e}_i = \sum_{j=1}^i e_j$. If $(g_1, \ldots, g_{n+1}, \tau)$ belongs to Γ and $g_{n+1}, \ldots, g_1 \sigma_{d_1}, \ldots, d_k = (\sigma_{e_1}, \ldots, e_l)^\tau$, then there exist $\tau' \in S_d$ with $\tau'(i) = \tau(i)$ for $0 \leq i \leq \tilde{e}_l - 1$ and positive integers e'_l, e'_{l+1} with $e'_l + e'_{l+1} = e_l$ such that $g_n, \ldots, g_1 \sigma_{d_1}, \ldots, d_k = (\sigma_{e_1}, \ldots, e_l, e'_l, e'_{l+1})^{\tau'}$ and that $(g_1, \ldots, g_n, \tau')$ belongs to Γ', as is easily seen from the definition.

Let $e_1, \ldots, e_{l-1}, e'_l, e'_{l+1}$ be positive integers with $n_{l-1} = e_1 + e'_l + e'_{l+1} = d$. Then, let $X_{e_1, e'_{l+1}}$ be the set of $(g_1, \ldots, g_n, t_1, \ldots, t_{\tilde{e}_l-1})$ such that there exists $\tau' \in S_d$ with the property that $\tau'(i) = t_i (0 \leq i \leq \tilde{e}_l - 1)$, $g_n, \ldots, g_1 \sigma_{d_1}, \ldots, d_k = (\sigma_{e_1}, \ldots, e_l, e'_l, e'_{l+1})^{\tau'}$ and that the graph associated to $(g_1, \ldots, g_n, \tau')$ is isomorphic to Γ'.

If $v_{fin}(e') \neq v_{fin}(e'')$ or $e'_l \neq e'_{l+1}$, τ' maps $(e'_l - 1 + 1 \ldots e'_l)$ to the cyclic component of $g_n, \ldots, g_1 \sigma_{d_1}, \ldots, d_k$ connected to $v_{fin}(e')$, and $(e'_l + 1 \ldots e'_{l+1})$ to the one connected to $v_{fin}(e'')$. If $e'_l \neq e'_{l+1}$, τ' maps $(e'_l - 1 + 1 \ldots e'_l)$ and $(e'_l + 1 \ldots e'_{l+1})$ to cyclic components of lengths e'_l and e'_{l+1}, respectively. Thus there are e'_l, e'_{l+1} choices for τ' in these cases and we have $n_{\Gamma'} = \sum_{e'_l, e'_{l+1}} X_{e'_l, e'_{l+1}}$.

On the other hand, for each $(g_1, \ldots, g_n, t_1, \ldots, t_{\tilde{e}_l-1}) \in X_{e'_l, e'_{l+1}}$, there are e'_l, e'_{l+1} transpositions g_{n+1} for which there exists τ with $\tau(i) = t_i$ for $0 \leq i \leq \tilde{e}_l - 1$ such that $(g_1, \ldots, g_n+1, \tau)$ belongs to Γ. The number of such τ is $e_l := e'_l + e'_{l+1}$, and we have

$$n_{\Gamma} = \sum X_{e'_l, e'_{l+1}} e_l e'_l e'_{l+1}.$$

Here the sum is taken over different $X_{e'_l, e'_{l+1}}$'s with $e'_l + e'_{l+1} = e_l$.

Noting that $X_{e'_l, e'_{l+1}}$ and $X_{e'_{l+1}, e'_l}$ are the same for $e'_l \neq e'_{l+1}$ if and only if $v_{fin}(e') = v_{fin}(e'')$, we see

$$n_{\Gamma} = \sum_{e'_l + e'_{l+1} = e_l} e_l n_{\Gamma'} = \sum_{e'_l + e'_{l+1} = e_l} e_l n_{\Gamma'}.$$

if $v_{fin}(e') \neq v_{fin}(e'')$ and

$$n_{\Gamma} = \frac{1}{2} \sum_{e'_l + e'_{l+1} = e_l} e_l n_{\Gamma'}$$

if $v_{fin}(e') = v_{fin}(e'')$.

Finally, since

$$I_\Gamma = \int \frac{dx}{2\pi \sqrt{-1x}} \frac{xw_l}{(x - w_l)^2} I_{\Gamma'}(z_1, \ldots, z_k; w_1, \ldots, w_{l-1}, x, x)$$

holds,

$$\int \frac{dx}{2\pi \sqrt{-1x}} \frac{xw_l}{(x - w_l)^2} x^{-e'_l - e'_{l+1}} = e_l w_l^{-e_l}$$

proves the assertion.
Case (2): \(#\{e \in E|v_{\text{fin}}(e) = x_{n+1}\} = 2\).

By symmetry, we may assume that \(w_{l-1}\) and \(w_l\) appear as \(v_{\text{fin}}(e)\). Let \(e'\) be the edge such that \(v_{\text{fin}}(e') = x_{n+1}\). Let \(\Gamma' \in G_{n,k,l-1}\) be the graph obtained by removing \(x_{n+1}\) and connecting \(e'\) to \(w_l\).

As in Case (1), if \((g_1, \ldots, g_{n+1}, \tau)\) belongs to \(\Gamma\) and \(g_{n+1}, \ldots, g_1 \sigma_{d_{k}}, \ldots, d_k = (\sigma_{c_1}, \ldots, c_1)^\tau\), then there exists \(\tau' \in S_d\) such that \(g_n, \ldots, g_1 \sigma_{d_{k}}, \ldots, d_k = (\sigma_{c_1}, \ldots, c_1, c_1')^{\tau'}\), where \(c_1' = e_{l+1} + e_l\), and that \((g_1, \ldots, g_n, \tau')\) belongs to \(\Gamma'\).

For positive integers \(e_1, \ldots, e_{l-2}, e_{l-1}'\) with \(\sum_{i=1}^{l-2} e_i + e_{l-1}' = d\), let \(X\) be the set of \((g_1, \ldots, g_n, t_1, \ldots, t_{e_{l-2}}, l_{e_{l-1}})\) such that there exists \(\tau' \in S_d\) with the property that \(\tau'(i) = t_i (0 \leq i \leq e_{l-2}), g_n, \ldots, g_1 \sigma_{d_{k}}, \ldots, d_k = (\sigma_{c_1}, \ldots, c_1, c_1')^{\tau'}\) and that the graph associated to \((g_1, \ldots, g_n, \tau')\) is isomorphic to \(\Gamma'\).

Then there are \(e_{l-1}'\) such \(\tau'\), and \(n_{\Gamma'}; d_1, \ldots, d_k, x_{e_1}, \ldots, e_{l-2}, e_{l-1}'\) is \(#X\).

On the other hand, for \(e_{l-1}\) and \(e_l\) with \(e_{l-1} + e_l = e_{l-1}'\), the number of pairs \((g_{n+1}, \tau)\) with \(\tau(i) = t_i (0 \leq i \leq e_{l-2}), (g_1, \ldots, g_{n+1}, \tau)\) belongs to \(\Gamma\) is \(e_{l-1}'\) times \(\sum x_{e_1} \ldots \sum x_{e_{l-1}}\) be the cyclic permutation corresponding to \(e'\). Choose \(1 \leq r \leq e_{l-1}'\) and let \(s\) be the residue of \(r + e_l\) modulo \(e_{l-1}'\). We take \(g_{n+1}\) to be \((a_r, x_s)\), and then \(g_{n+1}, (a_1, \ldots, a_{e_{l-1}'})\) has cyclic components of lengths \(e_{l-1}\) and \(e_l\), containing \(a_r\) and \(a_s\) respectively. We can choose \(\tau\) so that the two components equal \((e_{l-1} + 1 \ldots e_{l-1})\) and \((e_{l-1} + 1 \ldots e_l)\), respectively.

Thus we have

\[n_{\Gamma'; d_1, \ldots, d_k, x_{e_1}, \ldots, e_{l-2}, e_{l-1}'}, e_l = \#X, e_{l-1}', e_{l-1}. \]

Since

\[I_{\Gamma'} = \int \frac{dx}{2\pi \sqrt{-1}} \frac{xw_{l-1}}{(x-w_l)^2} \frac{xw_l}{(x-w_{l-1})^2} I_{\Gamma'}(z_1, \ldots, z_k; w_1, \ldots, w_{l-2}, x) \]

holds in this case,

\[\int \frac{dx}{2\pi \sqrt{-1}} \frac{xw_{l-1}}{(x-w_{l-1})^2} \frac{xw_l}{(x-w_l)^2} x^{-e_{l-1}' - e_{l-1}} = \sum_{e_{l-1} + e_l = e_{l-1}'} e_{l-1} e_l w_{l-1}^{e_{l-1}} w_l^{-e_l} \]

proves the assertion.

\[\square \]

References

[MR 96m:14072]

[T1] N. Takahashi, Curves in the complement of a smooth plane cubic whose normalizations are P^1, preprint(Alg-geom/9905007).

Department of Mathematics, Hiroshima University, Higashi-Hiroshima 739-8526, Japan

E-mail address: takahasi@math.sci.hiroshima-u.ac.jp