Compact sets of compact operators in absence of $l^{1}$
HTML articles powered by AMS MathViewer
- by Fernando Mayoral
- Proc. Amer. Math. Soc. 129 (2001), 79-82
- DOI: https://doi.org/10.1090/S0002-9939-00-06007-X
- Published electronically: September 14, 2000
- PDF | Request permission
Abstract:
We characterize the compactness of a subset of compact operators between Banach spaces when the domain space does not have a copy of $l^{1}.$References
- Philip M. Anselone, Compactness properties of sets of operators and their adjoints, Math. Z. 113 (1970), 233–236. MR 261397, DOI 10.1007/BF01110195
- N. Bourbaki, Topologie Générale, Tome II: Chapitres 5 à 10, Hermann, Paris, 1974.
- Joseph Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics, vol. 92, Springer-Verlag, New York, 1984. MR 737004, DOI 10.1007/978-1-4612-5200-9
- Leonard E. Dor, On sequences spanning a complex $l_{1}$ space, Proc. Amer. Math. Soc. 47 (1975), 515–516. MR 358308, DOI 10.1090/S0002-9939-1975-0358308-X
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- Fernando Galaz-Fontes, Note on compact sets of compact operators on a reflexive and separable Banach space, Proc. Amer. Math. Soc. 126 (1998), no. 2, 587–588. MR 1443386, DOI 10.1090/S0002-9939-98-04285-3
- Hans Jarchow, Locally convex spaces, Mathematische Leitfäden. [Mathematical Textbooks], B. G. Teubner, Stuttgart, 1981. MR 632257
- Gottfried Köthe, Topological vector spaces. I, Die Grundlehren der mathematischen Wissenschaften, Band 159, Springer-Verlag New York, Inc., New York, 1969. Translated from the German by D. J. H. Garling. MR 0248498
- Gottfried Köthe, Topological vector spaces. II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 237, Springer-Verlag, New York-Berlin, 1979. MR 551623
- Theodore W. Palmer, Totally bounded sets of precompact linear operators, Proc. Amer. Math. Soc. 20 (1969), 101–106. MR 235425, DOI 10.1090/S0002-9939-1969-0235425-3
- Haskell P. Rosenthal, A characterization of Banach spaces containing $l^{1}$, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411–2413. MR 358307, DOI 10.1073/pnas.71.6.2411
Bibliographic Information
- Fernando Mayoral
- Affiliation: Departamento de Matemática Aplicada II, Escuela Superior de Ingenieros, Camino de los Descubrimientos s/n 41092, Sevilla, Spain
- Email: mayoral@cica.es
- Received by editor(s): April 20, 1998
- Published electronically: September 14, 2000
- Additional Notes: This research has been partially supported by the DGESIC project no. PB97-0706 and by La Consejería de Educación y Ciencia de La Junta de Andalucia.
- Communicated by: Dale Alspach
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 129 (2001), 79-82
- MSC (2000): Primary 47B07, 46B25
- DOI: https://doi.org/10.1090/S0002-9939-00-06007-X
- MathSciNet review: 1784015