NO \(n \)-POINT SET IS \(\sigma \)-COMPACT

KHALID BOUHJAR, JAN J. DIJKSTRA, AND R. DANIEL MAULDIN

(Communicated by Alan Dow)

Abstract. Let \(n \) be an integer greater than 1. We prove that there exist no \(F_\sigma \)-subsets of the plane that intersect every line in precisely \(n \) points.

Let \(n \geq 2 \) be some fixed integer. A subset of the plane \(\mathbb{R}^2 \) is called an \(n \)-point set if every line in the plane meets the set in precisely \(n \) points. The question of whether \(n \)-point sets can be Borel sets is a long standing open problem (see e.g. Mauldin [6] for details). Sierpinski [7, p. 447] has given a simple example of a closed set that meets every line in \(\aleph_0 \) points. It was shown by Baston and Bostock [1] and by Bouhjar, Dijkstra, and van Mill [2] that 2-point sets, respectively 3-point sets, cannot be \(F_\sigma \) in the plane. Both papers use a method suggested by Larman [5] for the case \(n = 2 \) which consists of proving on the one hand that 2-point sets cannot contain arcs and on the other hand that 2-point sets that are \(F_\sigma \) must contain arcs. Observe that to prove the result that is the subject of this note Larman’s program cannot be followed because it was shown in [2] that \(n \)-point sets can contain arcs whenever \(n \geq 4 \).

Theorem. Let \(n \geq 2 \). No \(n \)-point set is an \(F_\sigma \)-subset of the plane.

The three authors of this note each, independently of each other, found a proof for this theorem. We decided to publish the shortest proof jointly.

Proof. Assume that \(A \) is an \(n \)-point set that is an \(F_\sigma \)-subset of the plane. Let \(xy \) be an arbitrary rectangular coordinate system for the plane and let \(\lambda \) be the Lebesgue measure on \(\mathbb{R} \). According to [2] Proposition 3.2] there exists a nondegenerate interval \([a, b] \) on the \(x \)-axis and continuous functions \(f_1 < f_2 < \cdots < f_n \) from \([a, b] \) into \(\mathbb{R} \) such that \(A \) contains the graph of each \(f_i \). Consider an \(f_i \) and its graph \(G_i \). Since \(A \) is an \(n \)-point set each horizontal line intersects \(G_i \) in at most \(n \) points. So every fibre of \(f_i \) has cardinality at most \(n \). Consequently, according to Banach [4] Exercise 17.34], the variation of \(f_i \) is bounded by \(n(M - m) \), where \(m \) and \(M \) are the minimum and maximum values of \(f_i \). According to Lebesgue [4] Theorem 17.17] the derivative of a function of bounded variation such as \(f_i \) exists almost everywhere. Select a Borel set \(B \subset [a, b] \) such that \(\lambda(B) = b - a \) and every \(f_i \) is differentiable at every point of \(B \). By the Whitney Extension Theorem for \(C^1 \) functions [3] Theorem 3.1.16] there exists a set \(C \subset B \) such that \(\lambda(C) > 0 \) and
continuously differentiable functions $g_i : [a, b] \to \mathbb{R}$ with $g_i(C) = f_i(C)$ for $1 \leq i \leq n$. The functions g_i satisfy the premises of Theorem 7 in [6] so we may conclude that the set A is bounded or intersects some line in $n + 1$ points. Either way, the result is inconsistent with A being an n-point set.

References

