ON INTEGERS OF THE FORM $k2^n + 1$

YONG-GAO CHEN

(Communicated by David E. Rohrlich)

Abstract. In this paper we show that the set of positive odd integers k such that $k2^n + 1$ has at least three distinct prime factors for all positive integers n has positive lower asymptotic density.

1. Introduction

Integers of the form $k2^n + 1$ have received special attention. One main reason is that the potential factors of Fermat numbers have the form $k2^n + 1$. One may refer to Guy [10], A3, B21, and [1], [2], [4], [5], [8], [11], [12], [15]–[18]. In 1960 Sierpiński [17] used the congruence covering system to prove that there are infinitely many positive odd integers k such that $k2^n + 1$ is composite for all positive integers n. On the other hand, P. Erdős and A. W. Odlyzko [9] showed that the lower asymptotic density of odd integers k such that $k2^n + 1$ is prime for some positive integer n is positive.

In [6] we introduced the notation of $(2, 1)$–primitive m–covering systems. By constructing a $(2, 1)$–primitive 2–covering system and using a result on linear forms in logarithms, we show that the set of positive odd integers, which have no representation of the form $2^np^aq^β$, where p, q are distinct primes and $n, α, β$ are nonnegative integers (hence $n ≥ 1$), has positive lower asymptotic density. That is, the lower asymptotic density of odd integers k such that $k - 2^n$ has at least three distinct prime factors for all positive integers n is positive.

In this paper, by using the same $(2, 1)$–primitive 2–covering system in [6] and a result on linear forms in p–adic logarithms, we show that the set of positive odd integers k such that $k2^n + 1$ has at least three distinct prime factors for all positive integers n has positive lower asymptotic density.

In [6] and Sections 1–3 of this paper, all constants are effective computable (Baker’s method). In Section 4 we point out that Mahler’s result, which is an analogous extension of Roth’s result, also works well for [6] and the present paper, but related constants are noneffective computable (Roth’s method).

We only consider integers of the form $k - 2^n$ or $k2^n + 1$. For cases $k + 2^n$ and $k2^n - 1$ we have the exact same conclusions by using the same method. Our method also works well for integers of the form $ka + b^n$ or $ka^n + b$ with some reasonable restrictions on a, b and k.

Received by the editors April 29, 1999.

2000 Mathematics Subject Classification. Primary 11A07, 11B25.

This research was supported by the Fok Ying Tung Education Foundation and the National Natural Science Foundation of China, Grant No 19701015.
2. Notations and the main results

All primes in [6] and this paper are positive primes. We call \{a_i(n_i)\}_{i=1}^t a covering system if every integer \(y\) satisfies \(y \equiv a_i(\text{mod} \ n_i)\) for at least one value of \(i\). For the construction of covering systems one may refer to S. L. G. Choi [7]. For further related information one may see Guy [10], A19, B21 and F13. The following notations have been used in [6].

Definition 1. A positive integer \(d\) is said to be an \((a, b)\)-primitive divisor of order \(n\) if \(d|a^n - b^n\) and \(d \not| a^m - b^m\) for all \(1 \leq m < n\).

Definition 2. \{a_i(n_i)\}_{i=1}^t is said to be an \(m\)-covering system if every integer belongs to at least \(m\) of \(a_1(n_1), a_2(n_2), \ldots, a_t(n_t)\).

Definition 3. \{a_i(n_i)\}_{i=1}^t is said to be a \((2, 1)\)-primitive \(m\)-covering system if \{a_i(n_i)\}_{i=1}^t is an \(m\)-covering system and there exist distinct primes \(p_1, p_2, \ldots, p_t\) such that for each \(i\), \(p_i\) is a \((2, 1)\)-primitive divisor of order \(n_i\) (1 \(\leq i \leq t\)).

For \(m \geq 3\) we do not know whether there exist \((2, 1)\)-primitive \(m\)-covering systems. I believe so. For convenience, let

\[Y_r = \{k : k > 0, 2 \not| k, k - 2^n\ \text{has at least} \ r \ \text{distinct prime factors for all positive integers} \ n\},\]

\[G_r = \{k : k > 0, 2 \not| k, k2^n + 1 \ \text{has at least} \ r \ \text{distinct prime factors for all positive integers} \ n\}.

For a subset \(A\) of the natural numbers, let

\[A(x) = \{a \in A : a \leq x\},\]

\[d(A) = \liminf_{x \to \infty} \frac{|A(x)|}{x}.

That is, \(d(A)\) is the lower asymptotic density of \(A\).

In this paper the following conclusions are proved. The main theorem in [6] is included as a part of Theorem 1(ii).

Theorem 1. Suppose that there exists a \((2, 1)\)-primitive \(r\)-covering system. Then

(i) \(d(G_{r+1}) > 0\) and \(G_r\) contains an infinite arithmetic progression;
(ii) \(d(Y_{r+1}) > 0\) and \(Y_r\) contains an infinite arithmetic progression.

Corollary. (i) \(d(G_3) > 0\) and \(G_2\) contains an infinite arithmetic progression;
(ii) \(d(Y_3) > 0\) and \(Y_2\) contains an infinite arithmetic progression.

Theorem 2. The following statements are equivalent to each other:

(i) there exists a \((2, 1)\)-primitive \(r\)-covering system;
(ii) there exist an odd integer \(k\) and a finite set \(\{p_1, \ldots, p_t\}\) of distinct primes such that \(k2^n + 1\) is divisible by at least \(r\) of \(p_1, \ldots, p_t\) for all positive integers \(n\);
(iii) there exist an odd integer \(k\) and a finite set \(\{p_1, \ldots, p_t\}\) of distinct primes such that \(k - 2^n\) is divisible by at least \(r\) of \(p_1, \ldots, p_t\) for all positive integers \(n\).
3. Proofs

To prove Theorem 1, we need a result on linear forms in \(p\)-adic logarithms. Here we use a special case of the corollary of Theorem 1 in Yu [19] (p. 245).

Lemma 1 (Yu [19]). Let \(a_1, \cdots, a_r, b_1, \cdots, b_r\) be nonzero integers with \(|a_i| + 2 \leq A\), \(3|b_i| \leq B\) \((1 \leq i \leq r)\). Suppose that
\[a_1^{b_1} \cdots a_r^{b_r} - 1 \neq 0. \]
Then
\[\text{ord}_2 \left(a_1^{b_1} \cdots a_r^{b_r} - 1 \right) \leq c \log(4B), \]
where
\[c = 11145 \cdot 24^r(r + 1)^{2r+4} \frac{1}{(\log 2)^{r+2}(\log A)^r \log(2^{12} \cdot 3r(r + 1) \log A)}. \]

Lemma 2. Let \(p_1, \cdots, p_t\) be distinct odd primes and \(x \geq 3\). Then the number of positive odd integers \(M \leq x\) such that there exist a positive integer \(n\) and distinct primes \(q_1, \cdots, q_r \in \{p_1, \cdots, p_t\}\) with
\[M2^n + 1 = q_1^{\beta_1} \cdots q_r^{\beta_r}, \quad \beta_i \geq 1, \quad i = 1, \cdots, r, \]
is less than \(c_1(\log \log x)(\log x)^r\), where \(c_1\) depends only on \(r\) and \(p_1, \cdots, p_t\).

Proof. Given \(q_1, \cdots, q_r \in \{p_1, \cdots, p_t\}\). Let \(A = \max p_i + 2\). Suppose that \(M\) is a positive odd integer with \(M \leq x\) and
\[M2^n + 1 = q_1^{\beta_1} \cdots q_r^{\beta_r}, \quad n \geq 1, \quad \beta_i \geq 1, \quad i = 1, \cdots, r. \]

By (1) and Lemma 1 we have
\[n = \text{ord}_2 \left(q_1^{\beta_1} \cdots q_r^{\beta_r} - 1 \right) \leq c \log(12 \max \beta_i), \]
where \(c\) depends only on \(r\) and \(A\). By (1) and (2) we have
\[2^{\max \beta_i} \leq q_1^{\beta_1} \cdots q_r^{\beta_r} = M2^n + 1 \leq M2^{n+1} \leq x2^{1+c \log(12 \max \beta_i)}. \]
Hence
\[\max \beta_i < c_2 \log x. \]

By (2) and (3) we have
\[n \leq c_3 \log \log x. \]
Thus, for \(q_1, \cdots, q_r \in \{p_1, \cdots, p_t\}\), the number of positive odd integers \(M \leq x\) such that there exist a positive integer \(n\) and positive integers \(\beta_1, \cdots, \beta_r\) with
\[M2^n + 1 = q_1^{\beta_1} \cdots q_r^{\beta_r} \]
is less than
\[c_3(c_2)^r(\log \log x)(\log x)^r. \]

Lemma 2 follows by taking \(c_1 = c_3(c_2)^r C_1^r\).
Proof of Theorem 1(i). This proof is similar to the proof of the main theorem in [6]. Suppose that \(\{a_i \mod n_i\}_{i=1}^t \) is a \((2,1)\)-primitive \(r\)-covering system and \(p_1, \ldots, p_t \) are corresponding primes in Definition 3. Take an integer \(M \) satisfying
\[
M2^{n_i} + 1 \equiv 0 \pmod{p_i}, \quad i = 1, \ldots, t,
\]
\[
M + 1 \equiv 0 \pmod{2}.
\]
For any positive integer \(n \) there exist \(i_1, \ldots, i_r \) with \(1 \leq i_1 < i_2 < \cdots < i_r \leq t \) and \(n \equiv a_{i_j} \pmod{n_{i_j}}, \quad j = 1, 2, \ldots, r. \)
Then by (4) and
\[
2^{n_{i_j}} \equiv 1 \pmod{p_{i_j}}, \quad j = 1, \ldots, r
\]
we have
\[
M2^n + 1 \equiv M2^{n_{i_j}} + 1 \equiv 0 \pmod{p_{i_j}}, \quad j = 1, \ldots, r.
\]
Thus
\[
M2^n + 1 = p_1^{\alpha_{i_1}} \cdots p_t^{\alpha_{i_r}} b, \quad \alpha_{i_j} > 0 (j = 1, 2, \ldots, r), \quad b \in \mathbb{Z}.
\]
This means that \(M \in G_r \). Hence, if
\[
M2^n + 1 = q_1^{\beta_1} \cdots q_r^{\beta_r}, \quad \beta_i \geq 0, \quad i = 1, \ldots, r,
\]
where \(q_1, \ldots, q_r \) are distinct primes, then \(q_i \in \{p_1, \ldots, p_t\} \) and \(\beta_i \geq 1 (i = 1, 2, \ldots, r) \). By Lemma 2 the number of such \(M \leq x \) is less than
\[
c_1 (\log \log x)(\log x)^r.
\]
It is well known that the number of positive odd integers \(M \leq x \) with (4) is more than
\[
x \geq \frac{x}{2p_1 \cdots p_t} - 1, \quad x \geq X_3.
\]
Therefore, there exist at least \(x \geq \frac{x}{2p_1 \cdots p_t} - 1 - 2c_1 (\log \log x)(\log x)^r \) positive odd numbers \(M \leq x \) such that \(M2^n + 1 \) has at least \(r + 1 \) distinct prime factors for all positive integers \(n \). It is clear that all integers with (4) constitute an infinite arithmetic progression. This completes the proof of Theorem 1(i). The proof of Theorem 1(ii) is exactly as the proof of the main theorem in [6], except add \(M \in Y_r \). This completes the proof of Theorem 1.

The corollary follows from Theorem 1 and the fact that there exists a \((2,1)\)-primitive \(2\)-covering system (see the proof of the corollary in [6]).

Proof of Theorem 2. By the proof of Theorem 1 we know that (i) implies (ii) and (iii). We now prove that (ii) implies (i). For each \(i \), let \(n_i \) and \(a_i \) be the least positive integers such that
\[
2^{n_i} \equiv 1 \pmod{p_i}, \quad k2^{n_i} + 1 \equiv 0 \pmod{p_i}.
\]
Then, for each \(i, p_i \) is a \((2,1)\)-primitive divisor of order \(n_i \). For any positive integer \(n \), by the assumption, there exist \(j_1, \cdots, j_r \) such that
\[
p_{j_i} | k2^n + 1, \quad i = 1, 2, \cdots, r.
\]
By (5) and (6) we have
\[
p_{j_i} | k, \quad p_{j_i} | k(2^n - k^{n_i}).
\]
Hence
\[(7) \quad 2^{n-a_{j_i}} \equiv 1 \pmod{p_{j_i}}, \quad i = 1, \ldots, r.\]
By the definition of \(n_{j_i}\) and (7) we have \(n \equiv a_{j_i} \pmod{n_{j_i}}\) \(1 \leq i \leq r\). Thus \(\{a_i \pmod{n_i}\}_{i=1}^r\) covers each positive integer at least \(r\) times, and hence is an \(r\)-covering system. Therefore, (ii) implies (i). Similarly, (iii) implies (i). This completes the proof of Theorem 2.

4. Noneffective versions

In [6] and the above arguments, all constants are effective computable. In this section we use Mahler’s result, which is an analogous extension of Roth’s result, to prove Lemma 2 in [6] and Lemma 2 (in a weak form which is sufficient for our purpose).

Lemma 3 (Mahler [13], Ridout [14]). Let \(\theta\) be any nonzero algebraic number, let \(p_1, \ldots, p_t, q_1, \ldots, q_l\) be distinct primes and let \(\alpha, \beta, \gamma, c'\) be real numbers with
\[0 \leq \alpha \leq 1, \quad 0 \leq \beta \leq 1, \quad \gamma > \alpha + \beta, \quad c' > 0.\]
Let \(a, b, a', b'\) be positive integers with
\[a = a' p_1^{\alpha_1} \cdots p_t^{\alpha_t}, \quad \alpha_i \geq 0, \quad i = 1, \ldots, t,
\]
\[b = b' q_1^{\beta_1} \cdots q_l^{\beta_l}, \quad \beta_j \geq 0, \quad j = 1, \ldots, l,
\]
\[1 \leq a' \leq c'a^\alpha, \quad 1 \leq b' \leq c'b^\beta.
\]
Then
\[|\theta - \frac{b}{a}| > \frac{c''}{a^\gamma} \quad \text{if} \quad \theta - \frac{b}{a} \neq 0,
\]
where \(c'' > 0\) depends only on \(\theta, p_1, \ldots, p_t, q_1, \ldots, q_l, \alpha, \beta, \gamma\) and \(c'\).

(I) **Proof of Lemma 2 in [6]**. Let \(q_1, \ldots, q_r\) be distinct primes with
\[|2^n - q_1^{\alpha_1} \cdots q_r^{\alpha_r}| \leq x, \quad n \geq 1, \quad \alpha_i \geq 0, \quad i = 1, \ldots, r.
\]
By Lemma 3 we have
\[x \geq 2^n \left| 1 - \frac{q_1^{\alpha_1} \cdots q_r^{\alpha_r}}{2^n} \right| \geq 2^n \frac{c''}{2^{0.5n}} \quad (\theta = 1, \alpha = \beta = 0, \gamma = \frac{1}{2}).
\]
So
\[(8) \quad n \leq c^{(3)} \log x.
\]
Hence
\[2^{\max \alpha_i} \leq q_1^{\alpha_1} \cdots q_r^{\alpha_r} \leq \left| q_1^{\alpha_1} \cdots q_r^{\alpha_r} - 2^n \right| + 2^n \leq x + 2^{c^{(3)} \log x}.
\]
Thus
\[(9) \quad \max \alpha_i \leq c^{(4)} \log x.
\]
All \(c^{(i)}\) depend only on \(q_1, \ldots, q_r\). Lemma 2 in [6] follows from (8) and (9).
(II) Proof of Lemma 2 (a weak form). Let q_1, \cdots, q_r be distinct primes and $1 \leq M \leq x$ with

$$M2^n + 1 = q_1^{\beta_1} \cdots q_r^{\beta_r}, \quad n \geq 1, \quad \beta_i \geq 0, \quad i = 1, \cdots, r. \quad (10)$$

If $n < \log x$, then

$$2^{\max \beta_i} \leq q_1^{\beta_1} \cdots q_r^{\beta_r} \leq M2^{n+1} \leq x^{1+\log x}.$$

Hence

$$\max \beta_i \leq c(5) \log x.$$

In this case, the number of M satisfying (10) is less than $c(6)(\log x)^{r+1}$. Now assume that $n \geq \log x$. Then

$$M^{\log 2} \leq x^{\log 2} = 2^{\log x} \leq 2^n.$$

That is,

$$M \leq (2^n M)^{(1+\log 2)^{-1}}.$$

Thus, by Lemma 3 with $\theta = 1$, $a' = 1$, $b' = M$, $\alpha = 0$, $\beta = (1 + \log 2)^{-1}$ and $\gamma = 2/3$, we have

$$1 = q_1^{\beta_1} \cdots q_r^{\beta_r} \left(1 - \frac{2^n M}{q_1^{\beta_1} \cdots q_r^{\beta_r}} \right)$$

$$\geq q_1^{\beta_1} \cdots q_r^{\beta_r} \frac{c(7)}{(q_1^{\beta_1} \cdots q_r^{\beta_r})^{2/3}}. \quad (11)$$

By (10) and (11) we have $M \leq c(8)$. All $c(i)$ depend only on q_1, \cdots, q_r. This completes the proof.

References

1. R. Baillie, New primes of the form $k \cdot 2^n + 1$, Math. Comput. 33(1979), 1333-1336. [MR 80h:10009]
ON INTEGERS OF THE FORM $k^2 + 1$

Department of Mathematics, Nanjing Normal University, Nanjing 210097, People’s Republic of China

E-mail address: ygchen@pine.ninu.edu.cn