Le degré de Lindelöf est $l$-invariant
HTML articles powered by AMS MathViewer
- by Ahmed Bouziad
- Proc. Amer. Math. Soc. 129 (2001), 913-919
- DOI: https://doi.org/10.1090/S0002-9939-00-05553-2
- Published electronically: September 19, 2000
- PDF | Request permission
Abstract:
Two Tychonoff spaces $X$ and $Y$ are said to be $l$-equivalent if $C_{p}(X)$ and $C_{p}(Y)$ are linearly homeomorphic. It is shown that if $X$ and $Y$ are $l$-equivalent, then the Lindelöf numbers of $X$ and $Y$ are the same. The proof given is a strengthening of the one given by N.V. Velichko to show that the Lindelöf property is $l$-invariant.References
- A. V. Arhangel′skiĭ, Some topological spaces that arise in functional analysis, Uspehi Mat. Nauk 31 (1976), no. 5(191), 17–32 (Russian). MR 0458366
- A. V. Arkhangel′skiĭ, Topological function spaces, Mathematics and its Applications (Soviet Series), vol. 78, Kluwer Academic Publishers Group, Dordrecht, 1992. Translated from the Russian by R. A. M. Hoksbergen. MR 1144519, DOI 10.1007/978-94-011-2598-7
- A.V. Arhangel’skiǐ, $C_{p}$-theory, in: M. Hušek and J. van Mill, eds., Recent Progress in General Topology (Elsevier Science Publishers B.V., 1992), 1-56.
- A. V. Arhangel′skii, Embeddings in $C_p$-spaces, Topology Appl. 85 (1998), no. 1-3, 9–33. 8th Prague Topological Symposium on General Topology and Its Relations to Modern Analysis and Algebra (1996). MR 1617452, DOI 10.1016/S0166-8641(97)00137-5
- J. Baars, Function spaces on first countable paracompact spaces, Bull. Pol. Acad. Sci. 42, 1 (1994), 29-35.
- M.M. Choban, General theorems on functional equivalence of topological spaces, Topol. Appl. 89 (1998), 223-239.
- O. G. Okunev, Weak topology of a dual space and a $t$-equivalence relation, Mat. Zametki 46 (1989), no. 1, 53–59, 123 (Russian); English transl., Math. Notes 46 (1989), no. 1-2, 534–538 (1990). MR 1019256, DOI 10.1007/BF01159103
- Oleg Okunev, Homeomorphisms of function spaces and hereditary cardinal invariants, Topology Appl. 80 (1997), no. 1-2, 177–188. MR 1469478, DOI 10.1016/S0166-8641(96)00165-4
- E. G. Pytkeev, Tightness of spaces of continuous functions, Uspekhi Mat. Nauk 37 (1982), no. 1(223), 157–158 (Russian). MR 643782
- Vladimir V. Tkachuk, Some non-multiplicative properties are $l$-invariant, Comment. Math. Univ. Carolin. 38 (1997), no. 1, 169–175. MR 1455481
- Vesko Valov, Function spaces, Topology Appl. 81 (1997), no. 1, 1–22. MR 1477130, DOI 10.1016/S0166-8641(97)00017-5
- N. V. Velichko, The Lindelöf property is $l$-invariant, Topology Appl. 89 (1998), no. 3, 277–283. MR 1645180, DOI 10.1016/S0166-8641(97)00219-8
Bibliographic Information
- Ahmed Bouziad
- Affiliation: Département de Mathématiques, Université de Rouen, CNRS UPRES-A 6085, 76821 Mont Saint-Aignan, France
- Email: Ahmed.Bouziad@univ-rouen.fr
- Received by editor(s): January 20, 1999
- Received by editor(s) in revised form: May 14, 1999
- Published electronically: September 19, 2000
- Communicated by: Alan Dow
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 129 (2001), 913-919
- MSC (2000): Primary 54C35; Secondary 46E10
- DOI: https://doi.org/10.1090/S0002-9939-00-05553-2
- MathSciNet review: 1707509