Subgroup separability, knot groups and graph manifolds
HTML articles powered by AMS MathViewer
- by Graham A. Niblo and Daniel T. Wise
- Proc. Amer. Math. Soc. 129 (2001), 685-693
- DOI: https://doi.org/10.1090/S0002-9939-00-05574-X
- Published electronically: April 27, 2000
- PDF | Request permission
Abstract:
This paper answers a question of Burns, Karrass and Solitar by giving examples of knot and link groups which are not subgroup-separable. For instance, it is shown that the fundamental group of the square knot complement is not subgroup separable. Let $L$ denote the fundamental group of the link consisting of a chain of $4$ circles. It is shown that $L$ is not subgroup separable. Furthermore, it is shown that $L$ is a subgroup of every known non-subgroup separable compact 3-manifold group. It is asked whether all such examples contain $L$.References
- R. B. J. T. Allenby and R. J. Gregorac, On locally extended residually finite groups, Conference on Group Theory (Univ. Wisconsin-Parkside, Kenosha, Wis., 1972), Lecture Notes in Math., Vol. 319, Springer, Berlin, 1973, pp. 9–17. MR 0382450
- A. M. Brunner, R. G. Burns, and D. Solitar, The subgroup separability of free products of two free groups with cyclic amalgamation, Contributions to group theory, Contemp. Math., vol. 33, Amer. Math. Soc., Providence, RI, 1984, pp. 90–115. MR 767102, DOI 10.1090/conm/033/767102
- R. G. Burns, A. Karrass, and D. Solitar, A note on groups with separable finitely generated subgroups, Bull. Austral. Math. Soc. 36 (1987), no. 1, 153–160. MR 897431, DOI 10.1017/S0004972700026393
- Gerhard Burde and Heiner Zieschang, Knots, De Gruyter Studies in Mathematics, vol. 5, Walter de Gruyter & Co., Berlin, 1985. MR 808776
- Andrew Casson and Douglas Jungreis, Convergence groups and Seifert fibered $3$-manifolds, Invent. Math. 118 (1994), no. 3, 441–456. MR 1296353, DOI 10.1007/BF01231540
- David Gabai, Convergence groups are Fuchsian groups, Ann. of Math. (2) 136 (1992), no. 3, 447–510. MR 1189862, DOI 10.2307/2946597
- D. D. Long and G. A. Niblo, Subgroup separability and $3$-manifold groups, Math. Z. 207 (1991), no. 2, 209–215. MR 1109662, DOI 10.1007/BF02571384
- Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89, Springer-Verlag, Berlin-New York, 1977. MR 0577064
- Graham A. Niblo and Daniel T. Wise, The engulfing property for $3$-manifolds, The Epstein birthday schrift, Geom. Topol. Monogr., vol. 1, Geom. Topol. Publ., Coventry, 1998, pp. 413–418. MR 1668320, DOI 10.2140/gtm.1998.1.413
- Derek J. S. Robinson, A course in the theory of groups, Graduate Texts in Mathematics, vol. 80, Springer-Verlag, New York, 1993. MR 1261639
- D. Rolfson, Knots and Links, Publish or Perish, Inc., Houston TX, 1990.
- J. Hyam Rubinstein and Shicheng Wang, $\pi _1$-injective surfaces in graph manifolds, Comment. Math. Helv. 73 (1998), no. 4, 499–515. MR 1639876, DOI 10.1007/s000140050066
- Leo F. Epstein, A function related to the series for $e^{e^x}$, J. Math. Phys. Mass. Inst. Tech. 18 (1939), 153–173. MR 58, DOI 10.1002/sapm1939181153
- William P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357–381. MR 648524, DOI 10.1090/S0273-0979-1982-15003-0
- D.T. Wise, Subgroup separability of the figure 8 knot group, Preprint (1998).
Bibliographic Information
- Graham A. Niblo
- Affiliation: Faculty of Mathematical Studies, University of Southampton, Highfield, Southampton, SO17 1BJ, England
- Email: gan@maths.soton.ac.uk
- Daniel T. Wise
- Affiliation: Department of Mathematics, University of California at Berkeley, Berkeley, California 94720
- Address at time of publication: Department of Mathematics, White Hall, Cornell University, Ithaca, New York 14853
- MR Author ID: 604784
- ORCID: 0000-0003-0128-1353
- Email: daniwise@math.cornell.edu
- Received by editor(s): April 14, 1998
- Received by editor(s) in revised form: May 24, 1999
- Published electronically: April 27, 2000
- Additional Notes: The second author was supported as an NSF Postdoctoral Fellow under grant no. DMS-9627506.
- Communicated by: Ronald A. Fintushel
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 129 (2001), 685-693
- MSC (2000): Primary 20E26, 20E06, 20F34, 57M05, 57M25
- DOI: https://doi.org/10.1090/S0002-9939-00-05574-X
- MathSciNet review: 1707529