A dichotomy theorem for subsets of the power set of the natural numbers
HTML articles powered by AMS MathViewer
- by I. Gasparis
- Proc. Amer. Math. Soc. 129 (2001), 759-764
- DOI: https://doi.org/10.1090/S0002-9939-00-05594-5
- Published electronically: August 30, 2000
- PDF | Request permission
Abstract:
The following dichotomy is established for any pair $\mathcal {F}$, $\mathcal {G}$ of hereditary families of finite subsets of $\mathbb {N}$: Given $N$, an infinite subset of $\mathbb {N}$, there exists $M$ an infinite subset of $N$ so that either $\mathcal {G} \cap [M]^{< \infty } \subset \mathcal {F}$, or $\mathcal {F} \cap [M]^{< \infty } \subset \mathcal {G}$, where $[M]^{< \infty }$ denotes the set of all finite subsets of $M$.References
- Dale E. Alspach and Spiros Argyros, Complexity of weakly null sequences, Dissertationes Math. (Rozprawy Mat.) 321 (1992), 44. MR 1191024
- G. Androulakis and E. Odell, Distorting mixed Tsirelson spaces, Israel J. Math. 109 (1999), 125β149.
- S. A. Argyros and I. Deliyanni, Examples of asymptotic $l_1$ Banach spaces, Trans. Amer. Math. Soc. 349 (1997), no.Β 3, 973β995. MR 1390965, DOI 10.1090/S0002-9947-97-01774-1
- S.A. Argyros, S. Mercourakis and A. Tsarpalias, Convex unconditionality and summability of weakly null sequences, Israel J. Math. 107 (1998), 157β193.
- S.A. Argyros and V. Felouzis, Interpolating hereditarily indecomposable Banach spaces, (preprint).
- S.A. Argyros and I. Gasparis, Unconditional structures of weakly null sequences, (preprint).
- Erik Ellentuck, A new proof that analytic sets are Ramsey, J. Symbolic Logic 39 (1974), 163β165. MR 349393, DOI 10.2307/2272356
- Fred Galvin and Karel Prikry, Borel sets and Ramseyβs theorem, J. Symbolic Logic 38 (1973), 193β198. MR 337630, DOI 10.2307/2272055
- V. Farmaki, Ramsey dichotomies with ordinal index, (preprint)
- R. Judd, A dichotomy on Schreier sets, Studia Math. 132 (1999), 245β256.
- P. Kyriakouli, On hereditary families of finite subsets of positive integers, (preprint).
- C. St. J. A. Nash-Williams, On well-quasi-ordering transfinite sequences, Proc. Cambridge Philos. Soc. 61 (1965), 33β39. MR 173640, DOI 10.1017/s0305004100038603
- S. Mazurkiewicz and W. Sierpinski, Contribution a la topologie des ensembles denomrables, Fund. Math. 3 (1920), 17β27.
- E. Odell, Applications of Ramsey theorems to Banach space theory, Notes in Banach spaces, Univ. Texas Press, Austin, Tex., 1980, pp.Β 379β404. MR 606226
- E. Odell and Th. Schlumprecht, A problem on spreading models, J. Funct. Anal. 153 (1998), no.Β 2, 249β261. MR 1614578, DOI 10.1006/jfan.1997.3191
- E. Odell, N. Tomczak-Jaegermann, R. Wagner, Proximity to $\ell _1$ and Distortion in asymptotic $\ell _1$ spaces, J. Funct. Anal. 150 (1997), no. 1, 101β145.
- J. Schreier, Ein Gegenbeispiel zur theorie der schwachen konvergenz, Studia Math. 2 (1930), 58β62.
- Jack Silver, Every analytic set is Ramsey, J. Symbolic Logic 35 (1970), 60β64. MR 332480, DOI 10.2307/2271156
- A. Tsarpalias, A note on the Ramsey property, Proc. Amer. Math. Soc. 127 (1999), no.Β 2, 583β587. MR 1458267, DOI 10.1090/S0002-9939-99-04518-9
Bibliographic Information
- I. Gasparis
- Affiliation: Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078
- Email: ioagaspa@math.okstate.edu
- Received by editor(s): February 19, 1999
- Received by editor(s) in revised form: May 5, 1999
- Published electronically: August 30, 2000
- Communicated by: Dale Alspach
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 129 (2001), 759-764
- MSC (1991): Primary 46B03; Secondary 06A07, 03E02
- DOI: https://doi.org/10.1090/S0002-9939-00-05594-5
- MathSciNet review: 1707146