Almost-everywhere discontinuity of the spectral radius
HTML articles powered by AMS MathViewer
- by Thomas J. Ransford
- Proc. Amer. Math. Soc. 129 (2001), 749-751
- DOI: https://doi.org/10.1090/S0002-9939-00-05617-3
- Published electronically: September 19, 2000
- PDF | Request permission
Abstract:
Let $\rho (T)$ denote the spectral radius of an operator $T$. We construct operators $S$ and $T$ on $\ell ^2$ such that $\lambda \mapsto \rho (T-\lambda S)$ is discontinuous almost everywhere on the unit disk.References
- Bernard Aupetit, Propriétés spectrales des algèbres de Banach, Lecture Notes in Mathematics, vol. 735, Springer, Berlin, 1979 (French). MR 549769
- W. T. Gowers and B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), no. 4, 851–874. MR 1201238, DOI 10.1090/S0894-0347-1993-1201238-0
- W. K. Hayman and P. B. Kennedy, Subharmonic functions. Vol. I, London Mathematical Society Monographs, No. 9, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976. MR 0460672
- K. Kuratowski, Topology. Vol. II, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1968. New edition, revised and augmented; Translated from the French by A. Kirkor. MR 0259835
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056
- Vladimír Müller, On discontinuity of the spectral radius in Banach algebras, Comment. Math. Univ. Carolinae 18 (1977), no. 3, 591–598. MR 500157
- Charles E. Rickart, General theory of Banach algebras, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0115101
Bibliographic Information
- Thomas J. Ransford
- Affiliation: Département de Mathématiques et de Statistique, Université Laval, Québec, Québec, Canada G1K 7P4
- MR Author ID: 204108
- Email: ransford@mat.ulaval.ca
- Received by editor(s): May 4, 1999
- Published electronically: September 19, 2000
- Additional Notes: The author’s research was supported by grants from NSERC (Canada) and the Fonds FCAR (Québec).
- Communicated by: Joseph A. Ball
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 129 (2001), 749-751
- MSC (2000): Primary 47A11
- DOI: https://doi.org/10.1090/S0002-9939-00-05617-3
- MathSciNet review: 1707001