Decay of global solutions, stability and blowup for a reaction-diffusion problem with free boundary
HTML articles powered by AMS MathViewer
- by Hamid Ghidouche, Philippe Souplet and Domingo Tarzia
- Proc. Amer. Math. Soc. 129 (2001), 781-792
- DOI: https://doi.org/10.1090/S0002-9939-00-05705-1
- Published electronically: September 20, 2000
- PDF | Request permission
Abstract:
We consider a one-phase Stefan problem for the heat equation with a nonlinear reaction term. We first exhibit an energy condition, involving the initial data, under which the solution blows up in finite time in $L^\infty$ norm. We next prove that all global solutions are bounded and decay uniformly to 0, and that either: (i) the free boundary converges to a finite limit and the solution decays at an exponential rate, or (ii) the free boundary grows up to infinity and the decay rate is at most polynomial. Finally, we show that small data solutions behave like (i).References
- Toyohiko Aiki, Behavior of free boundaries of blow-up solutions to one-phase Stefan problems, Nonlinear Anal. 26 (1996), no. 4, 707–723. MR 1362745, DOI 10.1016/0362-546X(94)00311-5
- J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford Ser. (2) 28 (1977), no. 112, 473–486. MR 473484, DOI 10.1093/qmath/28.4.473
- Thierry Cazenave and Pierre-Louis Lions, Solutions globales d’équations de la chaleur semi linéaires, Comm. Partial Differential Equations 9 (1984), no. 10, 955–978 (French). MR 755928, DOI 10.1080/03605308408820353
- Antonio Fasano and Mario Primicerio, Free boundary problems for nonlinear parabolic equations with nonlinear free boundary conditions, J. Math. Anal. Appl. 72 (1979), no. 1, 247–273. MR 552335, DOI 10.1016/0022-247X(79)90287-7
- Marek Fila, Boundedness of global solutions of nonlinear diffusion equations, J. Differential Equations 98 (1992), no. 2, 226–240. MR 1170469, DOI 10.1016/0022-0396(92)90091-Z
- Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836
- Hiroshi Fujita, On the blowing up of solutions of the Cauchy problem for $u_{t}=\Delta u+u^{1+\alpha }$, J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109–124 (1966). MR 214914
- B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations 6 (1981), no. 8, 883–901. MR 619749, DOI 10.1080/03605308108820196
- Yoshikazu Giga, A bound for global solutions of semilinear heat equations, Comm. Math. Phys. 103 (1986), no. 3, 415–421. MR 832917
- Alain Haraux and Fred B. Weissler, Nonuniqueness for a semilinear initial value problem, Indiana Univ. Math. J. 31 (1982), no. 2, 167–189. MR 648169, DOI 10.1512/iumj.1982.31.31016
- Kantaro Hayakawa, On nonexistence of global solutions of some semilinear parabolic differential equations, Proc. Japan Acad. 49 (1973), 503–505. MR 338569
- H. Imai, H. Kawarada, Numerical analysis of a free boundary problem involving blow-up phenomena, Proc. Joint Symp. Appl. Math. (1987), 277–280.
- Otared Kavian, Remarks on the large time behaviour of a nonlinear diffusion equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987), no. 5, 423–452 (English, with French summary). MR 921547
- O. A. Ladyzenskaja, V. A. Solonnikov, N. N. Uralceva, Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, A.M.S., Providence, 1968.
- Howard A. Levine, Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_{t}=-Au+{\scr F}(u)$, Arch. Rational Mech. Anal. 51 (1973), 371–386. MR 348216, DOI 10.1007/BF00263041
- Júlia Matos, Phénomène d’explosion totale pour l’équation de la chaleur avec non-linéarité du type puissance, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 4, 297–302 (French, with English and French summaries). MR 1675941, DOI 10.1016/S0764-4442(99)80213-4
- Wei-Ming Ni, Paul E. Sacks, and John Tavantzis, On the asymptotic behavior of solutions of certain quasilinear parabolic equations, J. Differential Equations 54 (1984), no. 1, 97–120. MR 756548, DOI 10.1016/0022-0396(84)90145-1
- Pavol Quittner, Boundedness of trajectories of parabolic equations and stationary solutions via dynamical methods, Differential Integral Equations 7 (1994), no. 5-6, 1547–1556. MR 1269670
- Riccardo Ricci and Domingo A. Tarzia, Asymptotic behavior of the solutions of the dead-core problem, Nonlinear Anal. 13 (1989), no. 4, 405–411. MR 987377, DOI 10.1016/0362-546X(89)90047-3
- Philippe Souplet, Sur l’asymptotique des solutions globales pour une équation de la chaleur semi-linéaire dans des domaines non bornés, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), no. 8, 877–882 (French, with English and French summaries). MR 1414551
- Philippe Souplet, Geometry of unbounded domains, Poincaré inequalities and stability in semilinear parabolic equations, Comm. Partial Differential Equations 24 (1999), no. 5-6, 951–973. MR 1680893, DOI 10.1080/03605309908821454
- Fred B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math. 38 (1981), no. 1-2, 29–40. MR 599472, DOI 10.1007/BF02761845
Bibliographic Information
- Hamid Ghidouche
- Affiliation: Laboratoire Analyse, Géométrie et Applications, UMR CNRS 7539, Institute Galilée, Université Paris Nord, 93430 Villetaneuse, France
- Philippe Souplet
- Affiliation: Département de Mathématiques, Université de Picardie, INSSET, 02109 St-Quentin, France and Laboratoire de Mathématiques Appliquées, UMR CNRS 7641, Université de Versailles 45 avenue des Etats-Unis, 78302 Versailles, France
- MR Author ID: 314071
- Email: souplet@math.uvsq.fr
- Domingo Tarzia
- Affiliation: Departamento de Matemática, FCE, Universidad Austral, Paraguay 1950, 2000, Rosario, Argentina
- ORCID: 0000-0002-2813-0419
- Email: tarzia@uaufce.edu.ar
- Received by editor(s): May 11, 1999
- Published electronically: September 20, 2000
- Communicated by: David S. Tartakoff
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 129 (2001), 781-792
- MSC (2000): Primary 35K55, 35R35, 80A22, 35B35, 35B40
- DOI: https://doi.org/10.1090/S0002-9939-00-05705-1
- MathSciNet review: 1802001